Categories
cafe with good nut knowledge Coffee review General Observations Science history slow

Coffee as an art at Briki, Exmouth Market

exterior of Briki coffee London
Briki London on the corner of Exmouth Market

Traditionally made coffee always appeals to my sense of coffee history. Coffee made its way out of Ethiopea via Turkey and the method of brewing the finely ground coffee in a ‘cezve’ or ‘briki’ is one that goes back a long way. It’s therefore always interesting when a new cafe arrives on the scene that offers “Greek” or “Turkish” coffee on its menu. Briki, in Exmouth Market, opened in May last year and so it was only going to be a matter of time before I visited to try it out. Aesthetically Briki appealed to me as soon as I walked through the door. Spacious and with the bar along one wall, there are plenty of seats available at which to slowly enjoy your coffee. The cafe itself is almost triangular and the other two walls have windows running all along them. What better way to sit and enjoy the moment (and your coffee) than to gaze out a window? Still, given that I had gone to a cafe called ‘Briki’ and that it advertised “Briki coffee” on the menu behind the bar, it was obvious that I had to try the briki coffee. The coffee was rich, flavoursome and distinctive, well worth the time taken to savour it. There was also an impressive selection of food behind the counter and the dreaded “does it contain nuts” question was met with a friendly check of the ‘allergen’ folder. I was therefore able to also enjoy the lovely (nut free) chocolate cake. Briki definitely gets a tick in the “cafes with good nut knowledge” box on my categories list.

image from British Museum website
Folio 109b from an album of paintings showing Turkish sultans and court officials. Kahveci. A youth who serves coffee. He is holding a cup in each hand, circa 1620.
© The Trustees of the British Museum

However as I realised later, the coffee was not brewed in the traditional way but in a Beko coffee maker – a coffee maker specifically designed for optimising the brewing of Turkish coffee. The idea of the Beko is that it carefully controls and automates the entire brewing process so that you get a perfect coffee each time. But just how do you make a ‘perfect’ Turkish coffee?

A quick duckduckgo (it’s a mystery to me why has this verb failed to catch on while ‘to google’ is used so frequently) revealed two sets of instructions on how to make Turkish coffee. The first set, (including some otherwise very good coffee brewing websites) suggested ‘boiling’ the coffee repeatedly in the pot (cezve/briki). The second set, which seemed to be more specifically interested in Turkish coffee (as opposed to interested in coffee generally), were much more careful, even to the point of writing, in a very unsubtle way, “NEVER LET IT BOIL“. According to this second set of websites, the coffee in the cezve should be heated until it starts to froth, a process that begins at around 70C, far below the 100C that would be needed to boil it. Warming the cezve to 70C produces these bubbles and the lovely rich taste of the traditionally made coffee. Heating it to boiling point on the other hand destroys the aromatics* that form part of the flavour experience of coffee and therefore makes a terrible cup of coffee.

The contrasting instructions however led me to recall a discussion in Hasok Chang’s Inventing Temperature. Perhaps we all remember from school being taught how thermometers need two fixed points to calibrate the temperature scale and that these two fixed points were the boiling point and the freezing point of water. Perhaps this troubled you at the time: Just as with making coffee in a cezve, just how many bubbles do you need in order to say that the coffee (or water) is ‘boiling’? How were you supposed to define boiling? How much did it matter?

Cezve, ibrik, Turkish Coffee Creative Commons license
Cezve, image © http://www.turkishcoffee.us

It turns out that these questions were not trivial. There is a thermometer in the science museum (in London) on which two boiling points of water are marked. The thermometer, designed by the instrument maker George Adams the Elder (1709 – 1773) marked a lower boiling point (where water begins to boil) and an upper boiling point (where the water boils vigorously). The two points differed by approximately 4C.  So how is it that we now all ‘know’ that water boils at 100C? And what was wrong with Adams’ thermometer? The Royal Society set up a committee to investigate the variability of the reported boiling point of water in 1776. Careful control of the heating conditions and water containers reduced the temperature difference observed between different amounts of boiling. However, as they experimented with very pure water in very clean containers they found that things just became more complicated. Water could be heated to 120C or even higher without ‘boiling’. They had, unintentionally, started investigating the phenomenon that we now know as ‘superheating‘. Superheating occurs when water is heated to a temperature far above its boiling point without actually boiling. What we recognise as boiling is the escape of gas (which is usually a mix of air and water vapour) from the body of the water to its surface. In order to escape like this, these bubbles have to form somehow. Small bubbles of dissolved air pre-existing in the water or micro-cracks in the walls of the container enable the water to evaporate and form steam. These bubbles of gas can then grow and the water ‘boils’. If you were to try to calibrate a thermometer using very pure water in very clean containers, it is highly likely that the water would superheat before it ‘boiled’, there just aren’t the ‘nucleation’ sites in the water to allow boiling to start. The Royal Society’s committee therefore came up with some recommendations on how to calibrate thermometers in conditions that avoided superheating which meant thermometers were subsequently calibrated more accurately and superheating (and improved calibration points) could be investigated more thoroughly.

Perhaps viewed in this way there are even more parallels between Turkish coffee and physics. It has been written that “making Turkish coffee is an art form“. It is a process of practising, questioning and practising again. The Beko coffee machine automates part of the process of making Turkish coffee. When it’s done well though, Turkish coffee is far more than just the temperature control and the mechanics of heating it. There is the process of assembling the ingredients, the time spent enjoying the coffee and the atmosphere created by the cafe in which you drink it. Coffee as art in Briki is something that I would willingly spend much more time contemplating.

 

Briki is at 67 Exmouth Market, EC1R 4QL

“Inventing Temperature”, by Hasok Chang, Oxford University Press, 2004

*Although these aromatics are part of what gives coffee such a pleasurable taste, they decay very rapidly even in coffee that is left to stand for a while, it is this loss of the aromatics that is part of the reason that microwaving your coffee is a bad idea. A second reason involves the superheating effect, but perhaps more on that another day.

 

Categories
slow

The importance of going slow

journals in a library
How can we assess the work of scientists? Should we count the number of papers that they write?

In the past few weeks there has been a bit of a media storm about the state of science. A paper that had been published in the journal Science, was retracted because it turned out that the study had, quite possibly, been faked. The retraction highlighted the problem of “publish or perish” which has been a concern for many scientists of late. A second article, this time an editorial in Nature, took a different and perhaps surprising perspective on things. Apparently the public trust scientists much more than scientists think that they do. Why would that be the case?

These two stories should concern us because they lie at the heart of a current problem in science. According to the dictionary, ‘science’ is “systematic and formulated knowledge”. Such knowledge takes time to develop, it takes us time to understand what goes on, both on an individual level and as a society. The ‘publish or perish’ culture acts in opposition to this. Within a ‘publish or perish’ culture, the way that science works is that the more papers that you have, especially those that get cited and are published in (apparently) good journals, the more successful you will be in your career and in your ability to get research funding. It is essential to publish “high impact” papers in order merely to survive in science. In more extreme cases this has led to data being faked and subsequent retractions of the papers (if it is ever discovered). Active faking of data though is only the tip of the iceberg. The pressure to publish high profile papers quickly, can lead to the original paper not having been investigated thoroughly enough. In fact, there are even motivations to publish too quickly. Firstly, if you are wrong, you just publish a second paper a few months later. Two papers, two sets of citations. Secondly, publishing early means getting there first, ie. more citations. It has got to the point where it is advantageous to quickly publish poor quality research with hyped key words than it is to do a thorough job and perhaps be beaten to the publication by a more incomplete work. This cannot be good for science or our society and it suggests that, in order to have a scientific career you must, to a greater or lesser extent, cease to behave scientifically. It is perhaps for this reason that scientists themselves have a doubt as to why the public would trust them, they no longer trust themselves.

lilies on water
Is there symbolism here? There’s certainly a lot of physics.

The ‘publish or perish’ culture has come about partly as a consequence of needing a metric by which to judge the worth of research. In itself this is understandable but it does suggest that we are no longer confident of our ability, as a society, to measure the ‘good’ of something. To judge something as ‘good for society’ necessarily involves many different inputs from many disciplines. Assessing something as good is a value judgement. To redefine ‘good’ purely into something that we measure (by profit, or by number of papers) is to artificially reduce what is good for society to an arbitrary, but on appearance scientific, method. Rather than admit that questions over what is ‘good science’ are, essentially, value judgements, we try to give a false ‘scientific’ measure of their worth, one based on citations and publications. We still have our biases but we have become less conscious of them and instead try to hide them with a false scientism.

How could we change this, how else can we assess who is a ‘good’ scientist or what research will benefit society? This is, I think where it is important for everyone to get involved and to slow down. It is open for everyone to investigate, for themselves, what they think would make a ‘good’ society. Clearly the quest for knowledge, and in particular scientific knowledge, will form part of that good but for us, as a society to realise what is good we need to stop and think about it. There is a need to encourage clear methods of thinking but at the same time everyone must feel eligible to be a part of this natural philosophy, purely as a consequence of their being a citizen of society. On a practical level, this can be achieved by our maintaining a sense of awe and wonder at the beauty of the world, and society, around us. In my own field of magnetism for example, to know the physics behind magnetic attraction is to make it more beautiful. And that is in essence what I am trying to communicate with Bean Thinking; just as an artist does with a painting, I am attempting to share the beauty that I see as a result of seeing physics all around me. The saying of Pierre Duhem that “Physical theory is a mathematical painting of reality” can be taken at many levels. As a scientist, I am to a certain extent, an artist.

rain drops on a tulip
A tulip in spring. The water droplets on the petals suggest some very deep physics. As the flower opens into the sunshine, each layer  (physical and metaphorical) of petals reveals a new level of beauty.

Of course, there is no immediate connection between appreciating the beauty of knowledge and allocating research funds. Yet if we, as a society, appreciate science and beauty where we see it, we are going to slowly move back to a more sustainable, scientific way of doing science. “By learning to see and appreciate beauty, we learn to reject self-interested pragmatism”¹. By allowing ourselves to assess the good of society across many measures, we recover science. Denying the fact that what qualifies as ‘good’ is ultimately a value judgement and instead covering it in false metrics, imperils science. It is in the history of humanity to ask ‘why’. Moving to a predominantly technology driven quasi-science does not enrich us as a species. Good art, good music, great science can. Great discoveries of the past have not been obtained by chasing the latest chimera of a device, they have been uncovered through an insatiable curiosity. A demand to know ‘why’ things are the way they are. We are destroying the very science we are so keen to promote if we conform to the key-word, hype and technology driven ‘publish or perish’ culture. It has got to the point where, in order to save science, it is imperative that we, as a society, recover our ability to appreciate the beauty in science.

I hope that Bean Thinking prompts at least some people to question the world around them. It is not important to agree with what is written in Bean Thinking indeed, perhaps with some things it is more important to disagree. The key thing is to notice the world around. The practise of slowing down and noticing things is the reasoning behind the cafe-physics reviews, as much as anything it enables me to practise slowing down and noticing too. To slow down and to appreciate what is there will mean that slowly, imperceptibly perhaps, we challenge the culture of ‘publish or perish’. To do so may not be too far short of a need to recover our humanity, to quote Laudato Si’ again, “[w]e need to see that what is at stake is our own dignity”².

¹ Pope Francis, Laudato Si’, (2015) #215

² ibid, #160

Further thoughts:

Michael Polanyi “Science, Faith and Society”, Sapientia Press, 1964

Michael Polanyi “Personal Knowledge: Towards a post-critical philosophy”, University of Chicago Press, 1974