slow

Me time at Hétam

Iced chocolate at Hetam. The chocolate is sourced from Indonesia. At the time of visiting, drinks were only available in take-away cups, hopefully this will change as the cafe becomes more established and the pandemic restrictions that were in place at the time of visiting are eased.

In 2021, a new cafe opened up in Bangsar, Kuala Lumpur, Malaysia. Called Hetam, it is a cafe almost designed for the post-pandemic, Instagram age that we find ourselves living in. At the time of visiting, there was no ‘inside’ to this cafe, everything was outdoors: customer seating was outdoors, even the ordering and the counter were outdoors. Umbrellas provided some protection from the downpours as well as the hot sun that you can get in Kuala Lumpur. You order at a counter which is on the right of what looks like it used to be an ordinary house on the service road parallel to Jalan Maarof (between Lorong Maarof 5 and 6). The house is now the headquarters for the online section of Hetam and is where they package up their online sales. There are a small selection of edibles to the right of the cash till but the main focus is on the coffee, tea and chocolate. The coffee is roasted by Hetam. At the time of visiting, the coffee was a choice of either an Indonesian natural or a Brazilian washed coffee and available as any of the usual espresso based drinks. I found that the Indonesian worked better in the espresso but that when brewing with an Aeropress at home, the Brazilian came out on top. Various Japanese Genmaicha and Hojicha teas were available but each time, I focussed on the coffee. The chocolate also is sourced by Hetam mostly from Indonesia and is well worth trying.

The staff at Hetam were very friendly and knowledgable. When we first arrived, they talked us through checking-in using the MySejahtera (Covid-19) app when we didn’t have data on our phones (as of 1 May 2022, hopefully MySejahtera will be something you don’t need to use any more). This led to a conversation on the origins of Hetam and their hopes for the cafe for the future. We ordered a hot long black and an iced chocolate and took a seat in the side/back garden of the house. The space seems almost made for Instagram. Infact, perhaps it was. Carefully arranged bamboo adorns the sides of the garden. White pebbles form the floor while strategically placed bits of tree are scattered throughout the space leading to a certain, specific aesthetic. The first time that we enjoyed a coffee at Hetam, another couple were already there. As we sipped our coffee, the couple split into model and photographer and, with what appeared to be a well practised routine of recognisable Instagram poses, set about photographing each other against different backdrops. In subsequent visits, we enjoyed the place to ourselves.

The counter at Hetam is helpfully under a shelter, the other seats are mostly under umbrellas. You get a glimpse here of the ‘insta-ability’ of the cafe. Random dead logs form a counterpoint feature to the white pebbles of the seating area.

The name “Instagram” is apparently a derivation of a combination of “instant camera” and “telegram”. The idea being that a message is sent through an image acquired by an instant camera. The word camera is in turn derived (from both Latin and Greek) from the word for a chamber or a vault. Presumably this was a suitable name for the camera because early photographs were taken through a pin hole into a vaulted dark chamber. Which brings us into the realm of physics as the photograph is literally that which is written by light. Film cameras and even the old Polaroid instant cameras, could still, legitimately be said to take photographs. The light would fall onto a chemically active film and change it based on the exposure levels so that the image was written directly by the light. When it was developed, the negative would be the reverse of the places on the film ‘written’ by the photons of the light (for a description of the process and a recipe for developing film with coffee click here, opens as pdf). This is not true of the sort of “instant cameras” most would now use to upload an Instagram post. In the case of digital cameras, the photons of the light still activate a light sensitive electronic chip behind the camera lens, but much of the interpretation of the image is done using computer software. For example, many of the light sensitive cells in the camera are not colour sensitive, they are only sensitive to the number of photons that fall on them (the intensity of the light). Colour images are formed by considering neighbouring cells which each have a different coloured filter covering them. The relative intensity of the electronic response within each group of cells is then interpreted by the software as a different colour. At this point can it be said that the image is written by the light? The final image is a mixture of the light falling on the photoactive cells and the interpretation of that electrical data by the software in the phone or digital camera. The light directs the electrons within the device but does it write the image?

Table, pebbles and bamboo in the seating area of Hetam, KL.

There’s also the issue of what it means to have the image and to share it. The picture on the phone, the image shared through the screens, is a collection of data points that no one can hold. A photograph printed from film or even the negative is, in that sense, more tangible. In the case of the negative, what you hold is what was written by the photons, by the light, at the point at which the subject was seen. In either case though what does it mean to have, or even to share, that image? Erich Fromm in his book “To have or to be” contrasts a poem of Tennyson with a haiku of Basho*. In the former, Tennyson ‘plucks’ a flower out of a wall in order to study it. Basho in contrast looks “carefully” at the flower; paying attention to it but not possessing it. Fromm questions our mode of being, suggesting that Tennyson could be compared “to the Western scientist who seeks the truth by means of dismembering life.” Is this fair? Does our desire to possess an image, pluck a flower or to ‘capture’ a moment and thereby ‘keep’ it necessarily imply that we would seek truth by means of dismembering life?

Which may take us to a consideration of those dead tree branches on the gleaming stones. They appear like petrified wood, wood that has been preserved for years through a process of fossilisation. We cannot own such objects, they outlast us. If we photograph it we cannot keep that moment, what does it mean to us if we don’t look carefully at the instant but rather try to pluck it for posterity?

So finally back to Hetam. While it may be ideal for Instagram, and while it will definitely be worth a few good photo ‘captures’, the space is also ideal for contemplation. For sitting with a coffee, enjoying the moment, appreciating the surroundings, both aesthetic and people, and for being rather than having. A friendly, outdoor and relaxed cafe, what more could you want?

Hetam is on Jalaan Maarof just next to the Petronas petrol station on the service road to Jalan Maarof.

*”To have or to be” by Erich Fromm, Jonathan Cape publishers, 1976 (1978)

Time for tea?

Matcha, tea in Japan, frothy tea
A Matcha tea in Japan. A lot to contemplate here.

A recent article in Caffeine magazine caught my attention. Emilie Holmes of Good and Proper Tea was writing about the joys of appreciating loose leaf tea. While tea is a little diversion from coffee, January is traditionally a time to look forward as well as back and maybe, BeanThinking should occasionally cross over to the tea side. It was one line in particular of that article that puzzled me. Writing about the ‘naturally “slow” nature of the tea ritual’, Holmes observed that while brewing loose leaf tea you would be able to see “the leaves in a glass pot emit wisps of colour as they infuse…”

It was great to read someone who clearly had spent time carefully observing their tea. And yet that sentence prompted a series of questions in my mind. It was not that I doubted the observation, indeed, thinking back to teas I have made and enjoyed, I realise that I have seen these wisps before. It was more a question of why would it happen, why would the brewing tea emit lines of colour from the leaves? These lines must be telling us something.

diffusion, convection, tea brewing
A tea bag in hot water. The lines of tea are difficult to see in the photo, you’ll just have to do your own experiments, but, streaming from the bottom of the bag, you can see wisps of darker tea-water.

We need to think about how tea brews. A first mechanism would be through turbulence. Hot water poured onto a bed of tea leaves would stir them up and the resulting movement within the pot would mix the leaves with the water leading to a properly brewed cup of tea. This is very much the lazy tea brewers bag-and-cup method (which I can share). It would lead to a brewed tea, but it could not lead to a situation in which you could sit back and see wisps of colour. That requires calm and the quiet moments of a pot of tea brewing while you can enjoy the process.

A second mechanism would be through diffusion. Ultimately the same mechanism as the principle behind how LEDs work, diffusion is where the soluble parts of the tea leaves would travel, through the process of a random walk, throughout the water of the pot. This is a very slow process and we would expect that the concentration of colour would be most intense around the leaves and then fade out gradually with distance from the leaves. We would not expect ‘wisps’ nor lines of tea, that suggests something else.

It suggests the third mechanism of the tea brewing: a mix of diffusion and then convection within the hot water of the pot. The lines of tea are indicating that within the cup, regions of the hot water are at slightly different temperatures. Owing to the hot water being in contact with cooler air surrounding it, the surface of the water is cooling down and sinking, leading to a convective motion within the water inside. As the water moves it carries the diffused tea with it into new areas of the water, a movement of hot water to cooler water and back again. The tea is carried in a line because the convection patterns are occurring in small cells within the tea pot, small regions where hot tea is moving towards cooler tea which is warmed and itself moves. The convection does not happen as if the hot water is one big mass but a series of smaller ‘cells’. We see similar cells on the surface of the Sun. The lines are telling us of the movement in the tea pot and the amount and speed of their movement reveals more about how hot the water is relative to the air outside the pot.

diffusion only
A tea bag in cold water: This time, there are no wisps of tea as the drink brews. Instead, there is a slow diffusion of tea infused water from the bag outwards.

Testing this idea I required tea bags. My tea pots are opaque and so would not help me to appreciate this detail of brewing a cup of tea and so it was back to the bag-in-cup method. However, in order to avoid turbulence, I poured the water (hot or cool) into the mug before adding the tea bag. It was not the best way to make a tea, apologies to tea lovers, but it was a tea that I do not enjoy anyway, so it was good to use it up. Sure enough, when the tea bag was put into the hot water, within a very short time, wisps of coloured water formed lines curling underneath the bag. Why did they flow down? Was it because the tea in the bag was slightly cooler than the hot water and so, as the tea diffused out of the leaves it moved with convection downwards because of gravity and the fact that cooler water is denser? A tea bag in cool water however behaved differently. The water in the cup had been taken from the tap and then left in the cup for a couple of hours so that the water was definitely at the same temperature as the room. This time, the tea bag first floated and then sank to the bottom of the cup. There was no obvious infusion of the tea-coloured water into the plain water but slowly the region around the bottom of the tea cup at the bag turned browner with the tea. As time went on, this region expanded to give a tea layer and a water layer.

The wispy lines of tea only happened when using hot water. Which suggests a further experiment. How do these wisps change when brewing for black teas as opposed to green teas (which use a lower brewing water temperature)?

After about five minutes the tea brewed in hot water (left) was fairly evenly distributed throughout the cup whereas the tea brewed in cold water (right) showed a distinct layering between concentrated tea at the bottom of the cup and plain water above that layer.

One last observation with these tea bags in the hot water. Some of the tea floated within the bag, some sank, as time went on, more tea leaves fell towards the bottom of the bag (which was itself floating). What was happening there? Maybe if you experiment with your tea, you can let me know in the comments below, on Twitter or on Facebook. There are definite advantages to slowing down and brewing a proper cup of tea.

In search of origins

Amaje coffee
Buriso Amaje Coffee from Ethiopia via Amoret Coffee in Notting Hill. The Jimma 74158 and 74160 varietals are selections from coffee grown in the wild.

It was a goat herder named Kaldi, so the story goes, who first noticed the effect of coffee beans on the the energy levels of his goats. After telling the local abbot of his observations, the monks at the nearby monastery realised that this drink could help them stay awake during prayer and so the reputation, and consumption, of coffee spread from Ethiopia and then throughout the world.

While the details may be questionable, there is evidence that the coffee plant originated in Ethiopia. Coffee still grows wild in parts of Ethiopia and the oldest varietals are also to be found there. And so, when I realised that my latest coffee was an Ethiopian Natural of varietal Jimma 74158 and 74160, roasted by Amoret coffee in Notting Hill, I thought, why not do a coffee-physics review rather than a cafe-physics review? For there are always surprising links to physics when you stop to think about them, whether you are in a cafe or sampling a new bag of beans.

This particular coffee was grown by Buriso Amaje in the Bensa District of the Sidama region of Ethiopia. The varietals were selections from the Jimma Research Centre from wild plants that showed resistance to coffee berry disease and were also high yielding. Grown at an altitude of 2050m, the naturally processed coffee came with tasting notes of “Blueberry muffin, white chocolate” and “rose petal” among others. Brewed through a V60, it is immediately clear it is a naturally processed coffee, the complex aroma of a rich natural released with the bloom. Indeed, the bloom was fantastically lively with the grounds rising up with the gas escaping beneath them in a manner reminiscent of bubbling porridge (but much more aromatic). And while I lack the evocative vocabulary of Amoret’s tasting notes, the fruity and sweet notes were obvious, with blueberry a clear descriptive term while I would also go for jasmine and a slight molasses taste. A lovely coffee.

Brewing it again with an Aeropress, the tasting notes were different. We could start to ponder how the brew method affects the flavour profile. But then we could go further, how would this coffee taste if brewed using the Ethiopian coffee ceremony? Which leads to further questions about altogether different origins. Where did this come from and how do our methods of experiencing something emphasise some aspects while reducing others? Ethiopia offers a rich thought current if we consider how things originated because it is not just known for its coffee, Ethiopia is also home to some of the world’s oldest gold mines. Today, one of the larger gold mines in Ethiopia lies just to the North West of where this coffee came from, while a similar distance to the south east is a region rich in tantalum and niobium. We need tantalum for the capacitors used in our electronic devices. In fact, there is most likely tantalum in the device you are using to read this. While niobium is used to strengthen steel and other materials as well as in the superconductors within MRI machines. Where do these materials come from?

The Crab Nebula is what remains of a supernova observed in 1054AD. Explosions like these are the source of elements such as iron. Image courtesy of Bill Schoening/NOAO/AURA/NSF

Within the coffee industry there has been a lot of work done to demonstrate the traceability of the coffee we drink. But we know much less about the elements that form the components of many of the electronic devices that we use every day. And while this leads us into many ethical issues (for example here, here and here), it can also prompt us to consider the question even more fundamentally: where does gold come from? Indeed, where do the elements such as carbon and oxygen that make coffee, ultimately, come from?

The lighter elements, (hydrogen, helium, lithium and some beryllium) are thought to have been made during the Big Bang at the start of our Universe. While elements up to iron, including the carbon that would be found in coffee, have been formed during nuclear fusion reactions within stars (with the more massive stars generating the heavier elements). Elements heavier than iron though cannot be generated through the nuclear fusion reactions within stars and so will have been formed during some form of catastrophic event such as a stellar explosion, a supernova. But there has recently been some discussion about exactly how the elements heavier than iron formed, elements such as the gold, tantalum and niobium mined in Ethiopia.

One theory is that these elements formed in the energies generated when two neutron stars (a type of super-dense and massive star) collide. So when the LIGO detector, detected gravitational waves that were the signature of a neutron star collision, many telescopes were immediately turned to the region of space from which the collision had been detected. What elements were being generated in the aftermath of the collision? Developing a model for the way that the elements formed in such collisions, a group of astronomers concluded that, neutron star collisions could account for practically all of these heavier elements in certain regions of space. But then, a second group of astronomers calculated how long it would take for neutron stars to collide which led to a problem: massive neutron stars take ages to form and don’t collide very often, could they really have happened often enough that we have the elements we see around us now? There is a third possibility, could it be that some of these elements have been formed in a type of supernova explosion that has been postulated but never yet observed? The discussion goes on.

coffee cup Populus
Where did it all come from? Plenty to ponder in the physics of coffee.

The upshot of this is that while we have an idea about the origin of the elements in that they are the result of the violent death of stars, we are a bit unclear about the exact details. Similarly to the story of Kaldi the goat herder and the origins of coffee, we have a good idea but have to fill in the bits that are missing (a slightly bigger problem for the coffee legend). None of this should stop us enjoying our brew though. What could be better than to sip and savour the coffee slowly while pondering the meaning, or origin, of life, the universe and everything? That is surely something that people have done throughout the ages, irrespective of the brew method that we use.

As cafes remain closed, this represents the beginning of a series of coffee-physics reviews. If you find a coffee with a particular physics connection, or are intrigued about what a connection could be, please do share it, either here in the comments section, on Twitter or on Facebook.

Missing matter

soya latte at the coffee jar camden
Not one made by me! But instead a soya-latte at the Coffee Jar a couple of years ago.

During these strange times of working from home, perhaps you, like me, have been preparing a lot more coffee. For me this has included, not just my regular V60s, but a type of cafe-au-lait for someone who used to regularly drink lattes outside. My previous-latte-drinker turns out to be a little bit discerning (the polite way of phrasing it) and so prefers the coffee made in a similar way each day. Which is why I’ve been weighing the (oat) milk I’ve been using.

So, each morning to prepare a coffee, I’ve been using a V60 recipe from The Barn and then, separately, weighing out 220g of refrigerated oat milk into a pan that I then heat on the stove. Generally I heat the milk for just over 5 minutes until it is almost simmering whereupon I pour it into a mug (with 110 – 130g of coffee inside – depending on the coffee). Being naturally lazy, I keep the cup on the scales so that it is easier to pour the milk in and then, completely emptying the pan into the coffee, the scales register an increase of mass (of milk) in the cup of 205-210g. Which means about 10-15g of milk goes missing each morning.

Now clearly it is not missing as such, it has just evaporated, but it does prompt a question: can this tell us anything about the physics of our world? And to pre-empt the answer, it actually tells us a great deal. But to see how, we need to go on an historical diversion to just over three hundred years ago, when Edmond Halley was presenting an experiment to the Royal Society in London. The experiment shares a number of similarities with my heated oat milk pan. It was later written into a paper which you can read online: “An estimate of the quantity of vapour raised out of the sea by the warmth of the Sun; derived from an experiment shown before the Royal Society at one of their late meetings: by E Halley“.

lilies on water, rain on a pond, droplets
Coffee, evaporation, clouds, rain, rivers, seas, evaporation. Imagining the water cycle by making coffee.

Halley heated a pan of water to the temperature of “the Air in our hottest summers” and then, keeping the temperature constant, placed the pan on a set of scales to see how much water was lost over 2 hours. The temperature of the air in “our hottest summers” cannot have been very high, perhaps 25-30C and there was no evaporation actually seen in the form of steam coming from the pan (unlike with my milk pan). Nonetheless, Halley’s pan lost a total of 13.4g (in today’s units) of water over those two hours.

Halley used this amount to estimate, by extrapolation, how much water evaporated from the Mediterranean Sea each day. Arguing that the temperature of the water heated that evening at the Royal Society was similar to that of the Mediterranean Sea and that you could just treat the sea as one huge pan of water, Halley calculated that enough water evaporated to explain the rains that fell. This is a key part of the water cycle that drives the weather patterns in our world. But Halley took one further step. If the sea could produce the water for the rain, and the rain fed the rivers, was the flow of the rivers enough to account for the water in the Mediterranean Sea and, specifically, how much water was supplied to the sea compared to that lost through the evaporation? Halley estimated this by calculating the flow of water underneath Kingston Bridge over the Thames. As he knew how many (large) rivers flowed into the Mediterranean, Halley could calculate a very rough estimate of the total flow from the rivers into the Mediterranean.

Grecian, Devereux, Coffee house London
A plaque outside the (old) Devereux pub, since refurbished. The Devereux pub is on the site of the Grecian Coffee House which was one of the places that Halley and co used to ‘retire’ to after meetings at the Royal Society.

The estimates may seem very rough, but they were necessary in order to know if it was feasible that there could be a great water cycle of rain, rivers, evaporation, rain. And although Halley was not the first to discuss this idea (it had been considered by Bernard Palissy and Pierre Perrault before him), this idea of a quantitative “back of the envelope” calculation to prompt more thorough research into an idea, is one that is still used in science today: we have an idea, can we work out, very roughly, on the back of an envelope (or more often on a serviette over a coffee) if the idea is plausible before we write the research grant proposal to study it properly.

So, to return to my pan of oat milk simmering on the stove. 15g over 5 minutes at approaching 100C is a reasonable amount to expect to lose. Only, we can go further than this now because we can take the extra data (from the thermostats we have in our house and the Met Office observations for the weather) of the temperature of your kitchen and the relative humidity that day and use this to discover how these factors affect the evaporative loss. Just as for Halley, it may be an extremely rough estimate. However, just as for Halley, these estimates may help to give us an understanding that is “one of the most necessary ingredients of a real and Philosophical Meteorology” as Halley may have said before he enjoyed a coffee at one of the Coffee Houses that he, Newton and others would retire to after a busy evening watching water evaporate at the Royal Society.

Rosie and Joe, St Giles churchyard

Coffee in a Wake Cup at Rosie & Joe in St Giles. The space rewards those who notice.

There is a long history of hospitality on the site of St Giles in the Fields stretching back far earlier than the Notes coffee barrow. But Rosie & Joe is a lovely iteration to that tradition. There’s a definite focus on tea at Rosie & Joe but the coffee is roasted by Square Mile and prepared on a La Marzocco machine. There is also a good selection of food to nibble on (as well as more food stalls nearby on weekday lunchtimes). And although it is a cart, there are a few seats and tables dotted around so it is easy to sit back and enjoy your coffee while the world races by.

St Giles High St is a very busy road and yet, sitting in the churchyard of St Giles is strangely peaceful. Despite the traffic and the occasional siren, it is one of those rare places in London that you can find the stillness to listen. A beautiful place to enjoy a coffee from an independent stall in fact! And if you have your own cup with you, there is even 10p off your coffee. The coffee was smooth and sweet, fruity but definitely a sweet and full bodied type of fruity cup. But why was it so peaceful? Was it merely that it was a lovely (but breezy) spring morning when I tried Rosie & Joe? Or was it that it is a small bit of nature in a built up environment? Both of these helped but I think it is also the way that the place rewards those who notice by offering more each time you look.
The ghost sign hidden behind the tree just outside the churchyard.

There’s the, perhaps slightly grim, history suggested by the fact that the ‘garden’ is significantly raised above the level of the pavement in parts. There’s the brickwork and stone walls of the church itself of course. The ‘ghost sign’ on a nearby building that is revealed to the coffee drinker by the fact that the tree between us and it has not yet got its summer leaves. And then the nod to the history of the site hinted at by the coffee cart itself: Since Matilda, wife of Henry I founded St Giles’ leprosy hospital on the site, a “cup of charity” was given to condemned prisoners as they made their way past St Giles on their way to their execution at Tyburn*. Very different now, but the tradition of refreshment for the traveller is continued.

But then a fire engine’s siren reminds you that you are in a cosmos, a universe filled with beautiful physics. You know whether the fire engine is approaching or has passed away from you from how the pitch of the sound changes as it goes past. The Doppler shift meaning that sound waves travelling towards you have a shorter wavelength (higher frequency, higher pitch) than those travelling away (longer wavelength, lower frequency, lower pitch). And part of the beauty of physics is that it is so universal; what works for sound also works for light. If an object emitting light is moving away from us, the light appears to have a longer wavelength (lower frequency, it is red-shifted) than if the same object were stationary or moving towards us where it would appear as if it emitted light with a shorter wavelength (higher frequency, blue shifted).

signboard at Rosie and Joe
Doesn’t a right imply a duty? There’s a lot that could be said about #supportindependent
So, similarly, if we were to look at the surface of a rotating planet and saw how the light reflected off that planet’s surface, the side of the planet that was rotating towards us would look ever so slightly bluer than the side rotating away from us which would look slightly redder. And if the planet’s surface was like Venus and obscured by clouds (rather like the ghost sign at Rosie & Joe will be obscured by leaves in a couple of months time) we could use the reflection of radio waves from the surface rather than visible light to see the same red-shift/blue-shift in the radio waves as the planet rotates**. In this way we could determine the direction of rotation of the planet and how fast it was rotating just as we get an indication of the speed of the fire engine from listening to the sound of the siren.

The siren takes us from a consideration of inner stillness to a recognition of the scale of the universe. Which is rather apt for a cafe in a churchyard, where the architecture of a church is often designed to be read symbolically, from the person to their place in the grand scheme of things***. One great thing about this particular cafe though was how much there was to see that cannot be included in this cafe-physics review for reasons of space. The location truly rewards those who pay attention to what they notice here. I can only recommend that you take some time out, take your re-usable cup and go to find some time to enjoy your coffee (or tea) in this quiet space in central London.

*The London Encyclopaedia, 3rd Edition, Weinreb et al., 2008

**Astronomy, the evolving universe, 6th Edition, Zeilik, 1991

***How to read a church, Taylor, 2003

Rosie and Joe can be found in St Giles in the Fields churchyard, Monday-Friday.

Coffee and science: a problem shared?

coffee and Caffeine at Sharps

What is the future of coffee? Science? Our society? Are these things held together more closely than we imagine?

There is a lot of science in coffee (and a lot of coffee in science). And there are also many scientists who are keen coffee drinkers and vice versa. But is there more in common between these two fields than even this? Could a shared problem be hiding a different (shared) problem?

One issue for coffee drinkers is reliability and reproducibility. How can we ensure that we get a good cup each time we visit a café or brew our own? In a similar way, how do we ensure that our experimental results in science are correct and reproducible? It is a fairly fundamental tenet of science that an experiment should be able to be reproduced in another lab with similar equipment. The suggestion is that this is not always happening, we have a ‘reliability’ problem in science (and sometimes in coffee).

A possible solution, in both fields, is some form of automation. In the world of coffee this is quite obviously just by making coffee via a machine. There have been several attempts to make reproducibly good coffee using an automated pour over machine. In the world of experimental science, it is not quite so clearly an automation process but is described instead as “data sharing”. The results of all experiments, or at least those that are published, should be shared (uploaded with the published paper) so that others can examine the data in more detail and form their own conclusions†.

For both coffee and science, it is suggested that this opening up of our process so that it is more transparent or reliable, will increase the reproducibility of good results and, crucially, mean that we get those results faster. We will get reproducibly good coffee without having to queue so long in the morning; we will make discoveries more quickly and have faster progress in science.

It seems that the problem that we thought we had, reproducibility, is perhaps not the one that we are actually aiming to solve. The problem we seem to be interested in is ensuring faster progress.

coffee under the microscope

We can look at coffee under the microscope (here are two different coffees ground to the same degree). But do we need to look more closely at the process of making good coffee or of doing science?

But an emphasis on faster progress can undermine our initial ideal of a reproducibly good result. For scientific research the emphasis on getting results quickly (at least within the time frame of the science funding cycle) has led to predictable problems. There are cases that I know about where results that were contrary to those that were wanted were suppressed. Not permanently. No, that would be demonstrably scientific fraud. No, suppressed just long enough for the first ‘ground breaking’ paper to be published. Then, after a suitable length of time, the second paper showing the problems with the first can follow up. Those involved get two papers (at least), and rapid progress is shown to be happening in the field. Would data transparency help here? Clearly not, because the initial set of data would still be suppressed until it was wanted those few months later.

What we need is a change in the structure of how science is done. We need to value scientific integrity and so trust that other scientists do too. We know that the current situation whereby promotions, funding etc are determined by the number of papers in ‘good’ journals, can act to undermine scientific integrity. This needs to change if the reliability issue is to be addressed. In the type of case described above, there would be no consequences for the people who kept their names on the paper(s) published. The only consequences would be if anyone refused to have their name on the paper as they knew it was misleading. And even then, the consequences would be to that person/those people in terms of their CV, and publication list, not those who published the paper and of course, shared the data.

coffee at Watch House

A good pour over takes time.
What are we looking for in coffee, in science? Is progress an aim of itself?

For the coffee, there are already discussions about whether the increase in throughput offered by automated coffee brewing techniques really contributes to the coffee experience that the cafés are trying to encourage. Can we really expect someone to slow down, take in the aroma, the mouthfeel, the taste and flavour if we rush the cup through to them on a production line? Isn’t part of the enjoyment of something to have to wait for it (hence lent before Easter; fasting before a feast)?

It is not that automation necessarily is bad. We can get a genuinely all round good coffee in a café that utilises a machine based pour over (perhaps). We can also get genuinely reproducible data in a situation where data is routinely shared. It’s just that data sharing does not solve the reproducibility problem, nor does automation give us continually good coffee. What makes the difference is a café that cares about the product that they are serving; scientists that care about the integrity of the research that they are doing. Automation processes give us faster results, they do not, automatically, give us better science (coffee).

Moreover, our desire for faster progress obscures questions that we should be asking if we slowed down a little. What is a good coffee experience? Who (if anyone) should own the scientific data shared? Is our desire for good coffee, quickly and (relatively) cheaply obtained, an aspect of that consumerism that is damaging for the planet’s ecological health? How much do we need to trust each other (and take responsibility for our own integrity) for our society, including our scientific society, to function? Is faster progress in and of itself, a “good” to aim for?

And perhaps, there is a final, more fundamental question. Have we become so accustomed to seeing ourselves and our work as merely a cog in a machine that we have become inured to the dehumanisation of society which seems to us almost natural and itself progress? Is this what we want for society?

The process of making a good cup of coffee indeed shares many things with the process of doing science. Perhaps this should not be surprising, both are practises embedded in our society. Certainly our view of the society that we live in can be informed by slowing down with our coffee as we enjoy a little science (or should that be the other way round)?

 

†It is not quite an automation process in the sense that the data is taken by a machine and then uploaded. However, it is still a dehumanisation process. At the root of the concept is the idea that the human experimenter can be taken out of the process. I would be happy to expand on this in the comments but for the sake of readability haven’t done so here.

To stay or to go at Cafe from Crisis

coffee commercial St volcano

Cafe from Crisis on Commercial Street, E1. Notice the arches…

It was not what I had expected. Entering the door of the Cafe from Crisis, you go up a ramp with a bench running alongside it before the counter looms in front of you with a large café space opening up to your right (previously partially obscured from your view by the wall for the ramp). Perhaps it is fitting that my expectations were wrong. Many of us have ideas about the homeless (why they are homeless, what homelessness is etc) that may not match fully with the reality. And this café is, after all, in the head office of Crisis, a UK national charity working with the homeless and homelessness.

The coffee is roasted by Volcano and there are a large number of food options (including vegan and veggie) and cakes at the counter. A selection of keep cups are also arranged in a rack on the left of the counter, should you not have one yet. We ordered an Americano and tea (to stay) and took our numbered wooden spoon to the table so that they could find us. Although it was late lunchtime and busy, the drinks arrived fairly quickly with the coffee in a (Crisis themed?) red cup. Apparently serving coffee in red cups make us perceive the coffee as warmer than if it is served in a blue cup. Whether this is true or not, the warm brew was very welcome on this cold January day. The café is situated on a street corner which means that it has many windows, each topped with a shallow arch. The building looks fairly modern from the outside, but the arches were reminiscent of the way that older buildings can be dated by the window style, along with other features. The Cure played in the background which entertained my tea drinking companion but made me wonder about the ideas of Pythagoras on the psychological impacts of different sorts of music (and whether it affected the ability to find thought connections in a café).

plant in a coffee cup

It turns out there are many things to notice in this photo. From the bricks to the self-defence tactics of plants. But what about the nature of the home of the plant?

As we sat, enjoyed our drinks and looked around, we noticed that some plants had found a home in coffee cups placed on the tables around. Small plants in plastic pots (a nod to the anthropocene as pointed out by @lifelearner47 on twitter) were dotted around the café. Did they move from an espresso to a long black cup as they grew larger? Perhaps it was the spiky plant in one of the pots, but my mind immediately jumped to hermit crabs and their search for a new shell each time they grew a bit bigger. Marine hermit crabs  have been shown to be happy in any old discarded shell. Normally these are the ex-homes of gastropods that have, well, “moved on” would be a euphemism, but marine based hermit crabs have been known to make their shells out of all sorts of things including our plastic litter. Land based hermit crabs however are far more demanding and only move into shells that have been specially remodelled by earlier generations of hermit crabs for their own use. This means that land based hermit crabs have to develop a social awareness of other hermit crabs when they want to swap shells.

Apparently the interaction goes something like this: A group of hermit crabs come together in a small-ish area and begin to scope each other out. The loose collection becomes a cluster as the crabs explore whether one of the larger crabs can be evicted from its shell. As the process of eviction is about to occur, the remaining crabs (which can number quite a few, 10 or more) literally ‘line up’ in order of shell size so that, when the largest is evicted, each crab can move up to the next sized shell leaving the smallest, most undesirable shell on the seashore and the poor evicted crab, shell-less.

Several questions arise but one is, do the crabs make decisions, “to stay or to go” based on how advanced the eviction process is? So, say a crab wanders into an area with an unusually large number of crabs in it (perhaps 4) but the crabs are all lined up in a queue ready to swap into each others shells. Do the crabs coming into the area stick around for a long time or do they head off somewhere else? Or, conversely, what if they enter an area where there are more than the usual number of ‘colleagues’, but they are all scattered about, not yet ready to evict the largest crab. What would our incoming crab do then?

coffee red cup Crisis

What would you learn if you noticed the connections your mind was forming while enjoying a coffee?

These questions were addressed by a group working with the terrestrial hermit crabs of Costa Rica. By defining five cells on the beach, each with a different arrangement of (empty but inaccessible) shells that the incoming hermit crab may want, the researchers found that the incoming hermits were making some strikingly sensible decisions. When the crab came into a region of scattered shells (that the incomer mistook for fellow crabs owing to a trick with a combination of loctite glue and partially burying the empty shells that the researchers used to fool the incomers), the incomer tended to stick around, waiting for an opportunity to swap a shell. If the incomer came but saw that the queue of shells had already formed, it still stayed a bit longer in the region relative to a control area devoid of shells, but it did tend to leave it after some time, perhaps to look for new shells elsewhere. The researchers concluded that when the crab came into an area and thought it had a pretty good chance of inserting itself into a good queue position, it would stay in the area waiting for the eviction to occur and the shell swapping process to start. However when the crab came into an area where the queue had already formed, it was unlikely to be able to get a good position in the queue and so would investigate the situation for a bit before wandering off elsewhere in the search of a new shell in a different area.

Does this have any relevance to a café trying to do a bit to address the problems of homelessness and the homeless in our city and country? I will leave that to each reader to ponder. However, it was a great opportunity to learn something new about our world, which only happened because I stopped to notice something in a café and then wondered how hermit crabs get their homes. It’s always good to slow down and notice things. What will you see next?

Cafe from Crisis (London) is at 64 Commercial Street, E1 6LT.

Pondering at Populus

It’s been a bit of a slow start to January, with no post since 2018, sorry!

But I wanted to share a couple of images from the next cafe-physics review. Perhaps you could place yourself in a comfortable chair in a café called “Populus”. Gazing out of the café, the front door looks like this:

door, Populus

A decorated door, but what connections do you make?

While looking inside the café, you are greeted with these patterns on the wall.

Inside Populus

Inside Populus.

What strikes you? What do you think about? I think there are a number of avenues for possible thought trains. Where would your thoughts go if you just sat here in Populus and pondered?

 

 

 

Corona gazing in cafes

interference patterns on coffee

There are many ways in which rainbows of colour are produced as light interacts with our coffee or in a cafe. Looking around yourself now, how many do you see? What physics underlies each?

As the nights grow longer and the days colder, we notice that windows steam up as the water vapour in the café condenses onto the cooler glass. Perhaps we see a similar thing on our glasses while we are drinking tea or on the windows of a bus. Initially we perhaps become frustrated at our inability to see what is going on outside but then we notice the colourful patterns around the lights of passing cars and of street lights. Haloes of coloured light around a central bright spot. What does this tell us and where else can we see it, either in a café or in life generally?

On a window pane, a large number of small droplets of water have condensed into what appears to us as a fog on the glass. As the light shines through from the car headlights, each droplet acts as an obstacle to the light and so bends it. You could see a similar effect with the waves on the sea going around stones or perhaps if you brew a large cup of coffee with the surface waves going around a spoon (let me know if you manage to see this bending in a coffee cup). The amount that the light bends is dependent on the wavelength of the light (look carefully at the waves going around obstacles in ponds to see this) and so different wavelengths (different colours) get bent by different amounts and interfere with each other at different points – a spectrum is produced. It is a phenomenon known as diffraction.

Not all beans are equal! How could you quickly distinguish between arabica and robusta beans?

This phenomenon means that we have a way of separating the frequencies (or wavelengths) of light. And so this means that we have a way of measuring the chemical composition of some substances as different chemicals absorb different frequencies and so have ‘fingerprints’ in the light they scatter. By passing the light scattered from a substance (such as arabica coffee beans compared to robusta) through a diffraction grating (which is an obstacle with a pattern of fixed size), we can separate the frequencies being scattered and see if any of them are ‘missing’ (ie. they have been absorbed by the material we’re studying). It would be  a bit like looking at that rainbow pattern in the café window and not seeing blue, its absence tells you something. This is one of the ways that robusta beans can be quickly found if they have been substituted for arabica beans in coffee trading.

Coffee Corona

Look carefully: Sometimes you can infer the existence of a thin (white) mist over your coffee by the corona pattern around reflected light fittings.

But it is not just its technological aspect that has interest for us surely? When gazing at the moon on a misty evening, the halo around the moon suggests the clouds between us and it. It is something that poets have remarked upon to evoke atmosphere, it is something that we can gaze at as we imagine the giant café window of our atmosphere. But the size, and distinctness of the lunar corona actually give us clues about the droplets making up the cloud. And then we look closer to home and to our own coffee and we see the same diffraction pattern again looking back at us from our coffee’s surface. Occasionally it is possible to see haloes on the coffee surface around the reflection of overhead lights in the café. A coffee corona! This reveals to us the fact that there are droplets of water above the surface of our coffee; an extra layer of hovering droplets. Something that we can sometimes see more directly in the dancing white mists.

Diffraction is a beautiful phenomenon that allows us to gaze and to contemplate how much we are able to deduce and how much we have yet to understand. How atmospheric our coffees and cafés are and the journey of understanding that we have taken to get to this point. Coffee gazing is a hobby that should be taken up by far more of us.

Bean Thinking noticing afternoons are going to start in London in early 2019. To find out more information, sign up to the Bean Thinking events list here:

Please enter your email address here if you would like to hear about future Bean Thinking events.

 

Noticing at Artisan, Ealing

coffee Artisan Ealing

A good coffee is a solid foundation for any afternoon’s noticing.

A cafe-physics review with a difference. In that, it’s not so much a review as an invitation. What do you notice in a café?

Last week, I had the opportunity to try Artisan’s Ealing branch. Although I had found a lot to notice on my previous visit to the East Sheen branch, I had a very specific reason for visiting the Ealing location of this small chain of four cafés. The coffee (espresso) was reliably good. Smooth and drinkable in a friendly atmosphere. Just as with the café in East Sheen, there were a good selection of edibles at the counter and plenty to notice. The light shades were immediately outstanding as something to notice while a framed ‘hole in the wall’ provided a conversation point. The café was very busy and while there was plenty of seating with many tables, we were still lucky to have got a table for two near the back. Behind us there was a lesson going on in the coffee school while on the wall was the calendar for the space booking downstairs. And it was this that I had come here for.

A couple of months ago, Artisan announced that this space would be available to rent to provide a friendly space (with coffee) for the meetings of local small businesses or charities. This stayed in the back of my mind for a while as it came about at roughly the same time as an idea for Bean Thinking.

Lampshades at Artisan Ealing

First the obvious. Immediately striking, these lampshades could provide several avenues for thought.

There are a couple of us who are interested in meeting, about once a month, to discuss science. As ‘science’ is quite a big subject, we thought we would limit it to science that is associated with coffee or with the café at which we are meeting. Perhaps readers of this website may realise that this is not such a restriction, it is quite easy to connect coffee to the cosmic microwave background radiation of the Universe or to chromatography and analytical chemistry. If we were to meet in a location such as Artisan, there should be plenty more food for thoughts. The lampshades prompted me to consider what made substances opaque or transparent? Where is the link to coffee and methods for measuring the coffee extraction? The hole in the wall suggested thoughts about the algorithms behind cash machines. I’m sure that there is plenty more to notice if we take the time to see it.

And so this is an invitation. Would you like to join us in exploring what we each notice about the science of our surroundings? The plan would be to meet once a month, probably starting late January 2019 or early February (date and location to be confirmed). An afternoon on the weekend is probably better than an evening and we’d probably stay for an hour or two. You do not have to be a practising scientist to come along indeed, it would be great if we could have people from a variety of walks of life. The idea is not (necessarily) to answer scientific questions that we each may have but instead to explore the science behind the questions, to find the connections that form our ideas of the universe. To really notice our surroundings and our coffees (tea drinkers would also be welcome). As a consequence of this, mobile phones/laptops etc. will be discouraged during the afternoon. We’d like to notice things around us and not be distracted by what a search engine suggests about it; if we think a search engine could help us, we’ll use it after we’ve left and come back the following month to discuss the issues further. So, if you are curious, would like to explore what you notice and can tolerate keeping your phone on silent and in your pocket for an afternoon, please do come along, it would be great to meet some of you.

menus and lampshades in Artisan

You may like to look more closely at this photo. How are the menus supported? What does that tell us about the history of science?

In order to understand whether there would be any interest in this idea and to hear your input about the format, content, location, time etc. I have set up a mailing list for these cafe-science-spaces. Please do sign up to the mailing list to hear the latest announcements concerning these events and also to email me back to contribute your opinion. You can sign up to the mailing list using the sign up form below. Alternatively, if you don’t want to sign up to the mailing list but do want to hear more, I will be advertising the events on Twitter and Facebook so please do feel free to follow me there.

 

Please enter your email address here if you would like to hear about future Bean Thinking events.