Categories
Allergy friendly Coffee review Observations Science history slow Tea

Creating an impression at 2Love Coffee House, Clapham Junction

coffee, cake menu, Clapham Junction, monmouth coffee
The menu at 2Love in Clapham Junction and some of the coffee making equipment in the window.

There is a lot of coffee paraphernalia on display in the windows at 2Love Coffee House on St John’s Road near Clapham Junction. Reusable cups, filters, moka pots, Chemex’s etc. Stepping inside, a piano greets you while the counter is on the left. The wall behind the counter is lined with jars of different sorts of tea while the coffee menu is on a blackboard close to the window. Coffee is roasted by Monmouth and is also available to purchase for brewing at home. Moreover, the number of re-usable cups on display meant that I have to admit to a touch of reusable cup envy when I saw the variety of glass cups on sale, have I used my cup enough to justify a second*? One great feature about this café was the care that they have taken to specify the allergens in their cakes on the blackboard, it is a considerate touch for people with allergies. Although we didn’t enjoy a cake on this occasion, it is great to know that I can!

There is definitely a musical feel to the café, with statues of musicians on shelves around the shop and pictures of different singers on each of the walls. Although we managed to find a table, it was rather crowded with the amount of chatter and distractions in the café initially challenging my assumption that all cafés can offer a space to contemplate and consider connections. However, this brief doubt in the idea behind Bean Thinking did not last long. The change in direction started with our discussion over an Americano and a fruit juice: can there be a justification for not eating certain meats if you are not already vegetarian/vegan and if so, what is it? This didn’t seem to go down too well with the table adjacent to us. On the wall behind our table was a metal picture of a horse drawn cart where the figures had been raised out of the picture to form a 3D image. It was reminiscent of the patterns given for stone rubbing as a child. But it was also reminiscent of something else, something that shines a light on an area of manufacturing as well as, perhaps, our conversation about the ethics of meat eating.

Not quite a mirror at 2 Love
3D Metal picture, musician statue and poster at 2Love Coffee House, who is the fairest of them all?

It concerns Chinese (or Japanese) magic mirrors. Known about for millennia (and not just in China, Aulus Gellius (c125 – approx 180 AD) wrote of them in the second century¹), they are slightly convex mirrors made of bronze. One surface appears to be an ordinary mirror but on the reverse surface, images of mythology or special Chinese characters are cast in relief. A Nature paper of 1879 describes why they were considered ‘magical’:

“If a polished surface is looked at directly, it acts as an ordinary mirror, reflecting the objects in front of it, but giving, of course, no indication whatever of the raised patterns on the back; if however a bright light be reflected by the smooth face of the mirror onto a screen, there is seen on this screen an image formed of bright lines on a dark background more or less perfectly representing the pattern on the back of the mirror, which is altogether hidden from the light”.¹

You can see photos of such mirrors and their reflections here but how would such an image be produced? Apart from magic, the first explanations for the effect focussed on it being trickery on the part of the makers of these mirrors. Perhaps the image was patterned onto the front of the mirror using more dense (or less dense) material, covered with a thin layer of lead or tin and highly polished so that you would never notice it by looking at your reflection only by shining light at it? Maybe there was other trickery involved on the part of the mirror makers to deceive us into thinking we could see through the mirror to the back. Later researchers wondered if these mirrors really existed at all as few could be found when they searched for them amongst Japanese mirror workshops. And yet a few mirrors with this magic quality were found and subject to study in the late nineteenth century.

window display 2Love
How much is that cup in the window?
Some of the reusable cups on sale at 2Love coffee house.

The results showed that the image was not formed if projected too close to the mirror but only if the screen were held some distance away from the mirror’s surface. Moreover careful optical experiments showed that the image was formed by the surface of the mirror having thicker regions that were less convex than the rest of the mirror so that these reflected the light differently². Although the image at the back of the mirror had been cast and not stamped on the back, the stresses and strains formed by the pattern on the metal somehow propagated through the (thin) mirrors and produced distortions on the surface of the mirror. Even when highly polished, these minute distortions in curvature remained causing the reflection of the ‘magic’ image under certain lighting conditions.

The theory describing the optics behind the magic mirrors was described as a ‘beautiful fact’ in a fairly recent mathematical description. But exactly how the stress of the pattern at the back gets transferred to the surface of the mirror remains to be understood³. Nonetheless, the fact that imperfections on one side of a material can be revealed by the projected reflections from the surface of the other, a process known as “Makyoh imaging”, is now used to check the integrity of semiconductor wafers before they are used in the manufacturing of devices. A piece of physics based neither on magic, nor on trickery, that is useful for our computer based lifestyles.

When faced with something that seemed improbable, it is interesting that our first explanations were based on magic, deceit on the part of the one who made it or distrust of the phenomenon altogether. It was only by carefully studying something that was too easily dismissed that the beautiful physics and industrial relevance of the property was revealed. For me this has pertinence to the question of our own investigation into what we think about the world. Do we place too much weight in our judgement of what we do not understand merely based on our own experience of how things are? Do we need to look more carefully at what we thought we knew? Great pondering points for a visit to a café and confirmation that, provided you have good coffee and a nice chair to sit on, contemplation directions can be found no matter how popular the venue.

2Love coffee is at 89 St John’s Road, Clapham Junction, SW11 1QY

¹ “The Mirror of Japan and its Magic Quality” Nature, April 10 1879, p 559

² “The Magic Mirror of Japan, Part 1”, WE Ayrton and John Perry, Proc. Royal. Soc, 28, 127 (1878-79)

³ “Oriental Magic Mirrors and the Laplacian Image”, MV Berry, Euro. J. Phys. 27, 109 (2006)

*Although there are differences depending on what you take into account, lifecycle analysis done here, here and here suggest a break-even point of disposable to reusable cups from 15 to 100 re-uses. However, if you consider that part of the solution to our environmental problems involves breaking the consumerist mindset then perhaps, if it ain’t broke, no need to replace it.

 

Categories
Allergy friendly cafe with good nut knowledge Coffee review General Observations Science history slow

Feeling the Earth move at Pritchard and Ure, Camden

Egg no pales, coffee, garden centre
Fried egg on cactus leaves. Cactus festival at Pritchard and Ure, Camden

Good coffee in a garden centre, in (nearly) central London, with some physics thrown in? Today’s cafe-physics review seems unlikely on several levels. And then it becomes even more unlikely as you realise that this garden centre and café are also a social enterprise where people “disadvantaged in the labour market” are helped back to employment through working here. All in all, Pritchard and Ure represent a great café to have come by.

Pritchard and Ure can be found in the gallery space of a warehouse type shop that houses the Camden Garden Centre. They serve Workshop coffee together with an extensive selection of alternative drinks and food. As it was lunchtime we enjoyed a spot to eat which gave me an opportunity to try cactus (it was cactus festival at the garden centre). Cactus leaves with re-fried beans and a cactus-water mocktail which came together with a reusable metal straw. The straws were being sold (together with brush straw cleaners) at the counter. After lunch there was a very well made long black (interestingly I was given the choice to have it either as a 6oz or an 8oz, ie. more or less water depending on whether I wanted more or less coffee taste) and resisted (somehow) one of the tempting cakes before having a wander in the garden centre.

equations art work coffee Camden
But are they real?
The equations are the writing on the wall at this cafe.

There are of course many things that you can notice and connect with/to in a garden centre. Plants, biosphere, windows and greenhouse effect, the carbon cycle, the nature of colour, the list could go on. In addition to all of these, to the left of the counter was an art piece on the wall with a list of various equations and comments. Were all these equations real? One thing in particular though in this café/garden centre was particularly mesmeric: the disco ball suspended as a pendulum from a beam across the ceiling. Initially we watched as the ball just glinted reflected light as it slowly swayed to and fro in its oscillation. It took 22 seconds to cover 5 oscillations while I estimated it was 7m in length. Knowing that there is a formula for calculating the period of oscillation I wondered, was my estimation any good?*

During the hour it took us to enjoy lunch, the position of the Sun moved in the sky so that the disco ball started to reflect an array of polka dots of light onto the walls surrounding us (you can see these in the photo). Owing to the combined rotation and oscillation of the ball it wasn’t too easy to measure the time period from these oscillations but about 4 seconds per swing (as I had obtained by merely watching the ball) seemed comfortingly correct. The sun slowly moved round and these dots danced until at some point the sun had moved far enough that the glitter ball was no longer in direct light. But had the Sun moved or the Earth rotated underneath it? We all know the answer (or at least we think we do), but we could use the pendulum to prove it (and to calculate our latitude).

discoball cafe
Disco ball pendulum together with polka dot reflected sunlight. The view from the gallery at Pritchard and Ure.

In various science museums around the world, different Foucault pendulums swing to and fro all day above circular patterns on the floor. The pendulums appear to rotate clockwise in the northern hemisphere and anti-clockwise in the southern hemisphere thereby illustrating the rotating earth underneath the pendulum. The idea is of course that the pendulum continues to swing in the same plane as it was when it was started off but as it is swinging the earth is rotating underneath it giving an apparent rotation of the pendulum swing over the course of a day. If we were at the north (or south) pole, the period of one complete rotation of the pendulum through a circle on the floor would take 24h. As most of us are not at the pole (and Pritchard and Ure certainly is not), the period of complete rotation is lengthened by a corrective factor proportional to the sine of the latitude. Consequently, it is perfectly feasible for us to calculate our latitude by observing a pendulum swinging for long enough in the absence of any breeze.

It is a great piece of evidence for the rotation of the earth (and by implication the fact that the earth is not flat and that the sun is not going round the earth each day). It’s also a very simple (hiding some complicated maths) demonstration that anyone could set up if they wished to carefully do so. So next time you see a disco ball suspended as a pendulum in a café, you would have another reason to start singing “I feel the Earth, move, under my feet…”

Pritchard and Ure is in the gallery of Camden Garden Centre at 2 Barker Drive, St Pancras Way, NW1 0JW

*7 m is an over estimate of the length of the pendulum based on the period of the oscillation. A length of 7m would give a time period of 5.3 seconds, whereas 22 seconds for 5 oscillations is about 4.4 seconds for one giving a calculated length of just under 5m. More details about how to calculate this are here.

Categories
Coffee review Observations Science history

Metrology and the Press Room, Twickenham

Press Room coffee Twickenham
The arrival of the pour over at the Press Room, Twickenham.

It is not often that I have an errand to run in Twickenham, but when one popped up just two weeks after reading Brian’s Coffee Spot review of The Press Room, it was obvious where we were going to have a coffee. The Press Room serves pour over coffees (along with a good selection of other drinks). It is always great to find somewhere that serves pour overs well and so I had no hesitation in ordering a Nicaraguan “Los Altos” prepared by V60. Hot chocolate was available as white, milk or dark chocolate and there were a number of alternative non-dairy milks on offer as well as a large variety of tea. A lovely feature of The Press Room is that they offer suspended coffees, the idea being that you buy a coffee now for someone later who may not otherwise be able to afford one. The total number of coffees (given/claimed) is recorded on a blackboard behind the counter. It was nice to see that at the time of our visit 800+ coffees had been paid forward (and just less than 800 claimed), suggesting that the Press Room is having a positive effect on its local community.

clock wall Twickenham coffee
The large clock on the wall at The Press Room in Twickenham.

A great thing about ordering a pour over is watching as the barista expertly prepares your coffee, taking the time to do this properly. To be fair, this is part of the reason that finding a café serving pour-overs is becoming more difficult. After a while, the coffee was brought over to our table together with a bowl ready for me to place the filter cone on it when I was ready to enjoy the coffee. After taking the obligatory photograph, and pondering when would be the best time to remove the filter from the top of the mug and place it onto the empty bowl, the clock next to us took our attention. It is a large time piece that dominates this corner of the room. It is revealing to consider how the accuracy and availability of clocks have changed the way we live as a society.

Considering measurement (of time and other things), I used to be in this area more frequently a few years ago when I worked on a project in collaboration with the National Physical Laboratory (which is down the road, on the same bus route that Brian’s Coffee Spot notes takes you to a few good cafés). Partly, NPL’s work is to ensure that we know how to measure things properly. Take the pour over I enjoyed at The Press Room. A known amount (perhaps 12 g) of coffee was weighed out before 200 g of water was poured slowly over the coffee. But how do you know that the 12 g measured at Press Coffee is the same 12 g as you measure at home? And while perhaps it may not be critical for the coffee culture (even the most extreme home-brewer does not need to know the amount of coffee they are using to the nearest 0.000 002%), knowing accurately how heavy something is can be extremely important. Hence the need for a standard kilogram (and a standard metre, second, Candela etc) so that we have a way of knowing that what you call a kg is the same as what I call a kg.

coffee bowl pour over
The coffee that escaped! But was it a measure of my patience or hesitation?

Oddly, the kilogram is the last fundamental unit still defined with reference to a physical object (the other fundamental units are seconds, metres, Kelvin, Amperes, Moles, Candelas). The kilogram reference block is a PtIr alloy kept at the International Bureau of Weights and Measures near Paris. However all this may change next year depending on a decision due in November 2018. If all goes to plan, from May 2019 all units will be defined with respect to natural constants such as the speed of light etc. For the kilogram, this has meant measuring mass relative to a magnetic force generated by a coil of wire in a device known as a Kibble balance. In this way, the kg can be defined with respect to Planck’s constant and an era in which we measured substances relative to known objects will end.

On a day to day level though, how much do these things matter to us? Sometimes the way we measure things affects how we view them (and therefore what questions we ask next). Take for example temperature. We are used to measuring degrees of ‘hot’, so on the centigrade scale 0ºC is the freezing point of water and 100ºC is the boiling point. But it wasn’t always this way. Celsius devised his original scale to measure degrees of cold so 0º was the boiling point of water and 100º was the freezing point (you can read more about that story here). It is arguable that changing to measuring degrees of ‘hot’ enabled us to more easily conceptualise the idea of heat as energy and the field of thermodynamics. Certainly for a while, considering the idea of ‘degrees of cold’ meant that some looked for a substance of ‘cold’ called “frigorific“¹. There’s a similarity here with the coffee at The Press Room, was the amount of coffee in the bowl used to hold the filter after I removed it from the mug a measure of my impatience before trying the coffee or my hesitation at testing the coffee? How we ask that question affects how we view the coffee and the café (for reference, I would take the positive interpretation: the amount of coffee in the bowl measures my impatience; I was eager to try the coffee).

droplets on the side of a mug
Condensation on the side of the mug. These droplets can reveal many aspects of physics, which do you think about?

Partly this suggests some of the ways in which language, and philosophy, underpin all science. It certainly suggests one further connection with this bright and comfortable café. Erich Fromm in “To have or to be”² considered an interesting linguistic usage that reveals our way of being. Do we “have an idea”, or do we “think”? Are we consumers or people with experiences? Do we wish to have, to acquire, to consume or do we wish to exist, to be. Our language affects how we perceive the world which in turn changes the language we use about it. Linguistically, depending on how we interpret the cafe’s name “The Press Room”, we either have a café that offers a space to read the latest news or one that is reflective of the coffee brewing process (specifically espresso); a space to get up to date or one in which to contemplate? The symbol of the café visible in the frontage of the shop and on the mugs suggests the latter, but maybe it is something we need to experience to truly know?

¹Inventing Temperature, Hasok Chang, Oxford University Press, 2008

²To have or to be, Erich Fromm, Jonathan Cape, 1978

The Press Room is at 29 London Road, TW1 3SW

Categories
General Observations Science history slow

(Im)perfect reflections on coffee

science in a V60
Have you noticed droplets like these dancing on your drip-brewed coffee?

With the recent coffees from Hundred House and Quarter Horse, there have been many opportunities to observe the coffee brewing in the V60 in the mornings. The steam rising from the filter paper, the different ways different coffees bloom and out-gas, the droplets that skim the surface of the coffee and bounce off the walls of the jug and then, of course, the many different effects with light. Watching the dancing droplets (an explanation of why they may dance is here), it is perhaps not immediately obvious that you could form a connection between these, the light reflections and an insight into something you may have noticed while passing through customs. And yet the connection is definitely there.

The connection is formed through a technique called Raman spectroscopy. Named after Chandrasekhara Venkata Raman (1888-1970) who discovered the Raman effect in 1928. As the ‘spectroscopy’ part of the name suggests, it is a technique that offers a way to identify different chemicals, or components, in a substance. For coffee it has been used both as a non-destructive technique to determine the kahweol content of coffee beans and hence help as a test for identifying rogue robusta in arabica beans and as a way of analysing the brewed coffee. But what is it, how does watching a brewing V60 help to understand it and why would you want to know about Raman spectroscopy while travelling through an airport?

beauty in a coffee, coffee beauty
A collection of bubbles on the side of the coffee. What happens when one of the dancing droplets collides with a group of bubbles?

Generally, it helps to begin with coffee and the link is the way in which the droplets bounce off the side of the jug. Brew a coffee and watch them (if you are a non-coffee drinker, you could try dripping hot water through a filter paper into a jug). When one of these droplets hits the wall of the V60 container, it generally bounces back with a trajectory expected for an elastic collision. Given the relative masses of the droplet and the jug, the speed of the reflected droplet is essentially unchanged (even if its direction is reversed). This is similar to what we would normally expect for light. We are used to considering light as waves but because of the wave-particle duality of quantum mechanics it is equally valid to consider light as a stream of particles called photons. As the photons hit a surface and are reflected off, they recoil with the same energy that they initially had, just like the droplets in the coffee. But now look more closely at the dancing droplets. Normally they hit the walls and not each other but just occasionally, they can hit either another droplet or a group of bubbles that have formed on the coffee surface. In these cases, rather than get reflected as before, the droplets transfer some of their energy to the collection of bubbles causing them to move and to wobble. And when the droplet is reflected back, it has a noticeably slower speed (and so we could say a lower kinetic energy) than when it initially danced into its collision. Where is the analogue with light?

When we think about a coffee bean, we probably think about something that is about 1cm oval, brown and quite solid. But if we zoom in, we find that it is made up of a collection of atoms bound together in molecules or, if we are thinking about a solid like salt, in a crystal structure. These atoms act as if they are balls connected by springs and so they wobble as would any structure of masses connected by springs. This is true whether the crystal is diamond or the molecule is caffeine, kahweol, cocaine or semtex (do you see where the customs part is going to come in yet?). Different crystal structures have different atomic arrangements meaning that they are effectively connected by springs of differing strength. If you build a mental model of masses connected with springs, you can see that changing the spring strength will change the vibration energy of the structure. So if now we think about the photons hitting such a structure, while most will bounce off as we saw with the droplet hitting the V60 wall, some photons will trigger a wobble in the crystal structure and bounce off with lower energy. It is a process analogous to the droplet hitting and bouncing off the collection of bubbles on the coffee surface.

Sun-dog, Sun dog
Sun dogs are caused by a different interaction between light and crystals. Rather than the inelastic scattering of Raman spectroscopy, Sun dogs are caused by the refraction of light by hexagonal platelets of ice crystals.

When a photon of light loses energy, it is equivalent to saying that the frequency of the light has changed (which is very closely related to what Albert Einstein got his Nobel prize for in 1921). So a photon that creates a crystal vibration and is scattered off with lower energy has a lower frequency (or longer wavelength) than it had when it first hit the crystal. Importantly, the energy lost by the photon is identical to the energy gained by the vibrating crystal and so by measuring the frequency change of the scattered light we have a way of determining the energy of the crystal (or molecule) vibration. As this energy depends on the way that the atoms are arranged in the crystal or molecule, measuring the frequency shift offers us a way of identifying the chemical under the laser light: kahweol or cocaine.

It is not an easy technique as you can guess from the V60 analogy. Only around one in a million photons incident on a solid will be Raman scattered. You need some pretty decent optics to detect it. Nonetheless, it is a powerful technique because no two chemical structures are the same and so it can be used to identify tiny amounts of smuggled material completely non-destructively. It becomes easier to understand how this elegant technique has become useful for many areas of our lives from customs, through to pharmaceutical development and even into understanding how fuel cells work.

Although it is stretching the analogy too far to say that you can see Raman scattering by watching the droplets on your V60, it is certainly fair to say that watching them allows you the space to think about what is happening on a more microscopic level as your bag is hand-scanned at customs. What do you see when you look closely at your brewing coffee?

 

Categories
Coffee review Observations Science history slow

Like clockwork at Doctor Espresso, Putney Bridge

Doctor Espresso Putney Bridge
There is a lot of physics in this photo alone, but there is even more to be seen if you visit this lovely little cafe.

“Isn’t it a thing of beauty?” So wrote Brian’s coffee spot review of the 1956 Gaggia Tipo Americana espresso machine found at the Putney Station branch of Doctor Espresso. And it is only possible to answer this question in the affirmative. There is something about a mechanical piece of equipment (particularly if it is shiny and has levers) that ignites a feeling of awe. Perhaps it is the awareness of the complexity of the tasks that, when traced through the machine, are revealed to be the result of a series of simple, but ingenious steps. Perhaps it is the feeling that it is possible for someone, one individual, to know inside out how the piece of equipment works and, if necessary, to build it. Perhaps it is because it is shiny. Nonetheless, I had been itching to go and try The Caffetteria, the Doctor Espresso café opposite Putney Bridge station for ages, since I chanced upon its review in Brian’s Coffee Spot. Trundling through the hot streets of London in a bus in this recent heatwave nearly made me reconsider and yet we ploughed on, finally arriving in this shaded spot in the mid-afternoon.

There is very little seating inside but the shade outside enabled us to take a seat by the window. A perfect location to watch people coming and going to and from Putney Bridge Station: who will pick up that 5p on the floor? Will anyone notice? There are a few more chairs and tables across the pavement next to the tree. Several cakes tempted us but we resisted, instead I enjoyed a (single) espresso, Italian style, very drinkable. There is something very relaxing about enjoying an Italian espresso in an independent (or at least very small chain) café. The café aims to “provide a tranquil environment for customers to relax and converse” and it would certainly appear to do so with odd pieces of decor and posters prompting different bits of conversation. The barista was very friendly and trusted us to enjoy our coffee outside before coming back in to pay. Perhaps this seems a small thing, but trust helps to build societies and small gestures of good, repeated, have a ripple effect on our world¹. A nice touch.

espresso Doctor Espresso Putney
The result.
A single espresso ready for enjoying.

Brian’s Coffee Spot describes the process of ‘pulling’ an espresso using this lever machine (the oldest working espresso machine in London apparently). The machine combines the beauty of the mechanical with the skill of the barista to produce a great coffee. This is not human vs machine but human working with machine to create something that others appreciate. A similar respect for the machine was expressed by the clock maker John Harrison about three centuries ago. Harrison had just made a clock that was able to keep time accurately over many weeks while at sea. His task was necessary because having a clock that accurately kept the time at the departure port  would enable a ship’s navigators to calculate their geographical position based on a comparison of this port time to the local time experienced by the ship. He was trying to solve the problem of ‘longitude’. Harrison had taken 19 years to develop his H3 clock which could keep time accurately at sea despite changes in temperature, humidity or rough conditions but within a few more years he’d produced the H4 (which can now be seen in the National Maritime Museum). Significantly smaller than the H3, Harrison said of it:

“I think I may make bold to say, that there is neither any other Mechanical or Mathematical thing in the World that is more beautiful or curious in texture than this my watch or Time-keeper for the Longitude…”²

Enjoying coffee in the company of posters
A conversation piece? The physics of buoyancy or the deceptions of marketing. You could spend a long time at Doctor Espresso thinking about these things.

Harrison lived before espresso machines were invented. Self-taught, Harrison designed and built his own clocks. How many of us would be able to do that? Although we wear watches, how many contain batteries and other components that produce a simple action (showing the time) by complex means. The opposite of what we admire in the lever operated espresso machine. Each individual element may be elegant, but as a composite it can be ugly, however aesthetically satisfying. Harrison built his first clock before he was twenty years old and almost entirely out of wood. Working on the basis of a pendulum, he ensured that the cogs did not wear down as they may be expected to do by utilising the grain of the wood and by using only fast growing oak². Why would this make a difference? Trees that grow fast will have well separated growth rings. As the ring is an area of weakness in the wood, a fast growing tree would have a lot of solid wood compared to a relatively small number of rings, thus affecting the structural properties of the cogs. Moreover Harrison’s wooden clocks did not need oiling because those bits that needed oiling were carved from a tropical hardwood that exuded its own grease. In later clocks Harrison was to overcome the problem of the varying temperature experienced at sea by inventing the bimetallic strip. Two metals of different thermal expansion coefficients placed on top of each other, this simple piece of kit is essential for all sorts of modern machinery including, probably, the espresso machine sitting beautifully at Doctor Espresso.

A warm afternoon in a café of such elegant machinery offers plenty of opportunities to ponder the world of clockwork and levers. Do we understand how having a clock would allow us to calculate our geographical position? What about latitude? How many of us could do this for ourselves? And as we check the time while finishing our espresso, how many of us can appreciate the simplicity that leads to complexity and build our own?

 

¹A bit of cod-philosophy formed by combining bits from Pope Francis’ encyclical Laudato Si’ with Paddington 2.

²Quoted from “Longitude”, Dava Sobel, 1995

Doctor Espresso’s Caffetteria is at 3 Station Approach, SW6 3UH

Categories
Coffee cup science General Observations Science history slow

Drip coffee

The universe is in a cup of coffee. But how many connections to different bits of physics can you find in the time it takes you to prepare a V60? We explore some of those links below while considering brewing a pour-over, what more do you see in your brew?

1. The Coffee Grinder:

coffee at VCR Bangsar
Preparing a V60 pour over coffee. How many connections can you find?

The beans pile on top of each other in the hopper. As the beans are ground, the bean pile shrinks along slipping layers. Immediately reminiscent of avalanches and landslides, understanding how granular materials (rocks & coffee beans) flow over each other is important for geology and safety. Meanwhile, the grinding itself produces a mound of coffee of slightly varying grain size. Shaking it would produce the brazil nut effect, which you can see on you breakfast table but is also important to understand the dynamics of earthquakes.

Staying at the grinding stage, if you weigh your coffee according to a brew guide, it is interesting to note that the kilogram is the one remaining fundamental unit that is measured with reference to a physical object.

2. Rinsing the filter paper:

V60 chromatography chemistry kitchen
A few hours after brewing pour over, a dark rim of dissolved coffee can be seen at the top of the filter paper. Chromatography in action.

While rinsing the filter we see the process of chromatography starting. Now critical for analytical chemistry (such as establishing each of the components of a medicine), this technique started with watching solutes ascend a filter paper in a solvent.

Filtration also has its connections. The recent discovery of a Roman-era stone sarcophagus in the Borough area of London involved filtering the excavated soil found within the sarcophagus to ensure that nothing was lost during excavation. On the other hand, using the filtered product enabled a recent study to concentrate coffee dissolved in chloroform in order to detect small amounts of rogue robusta in coffee products sold as 100% arabica.

3. Bloom:

bloom on a v60
From coffee to the atmosphere. There’s physics in that filter coffee.

A drop falling on a granular bed (rain on sand, water on ground coffee) causes different shaped craters depending on the speed of the drop and the compactness of the granular bed. A lovely piece of physics and of relevance to impact craters and the pharmaceuticals industry. But it is the bloom that we watch for when starting to brew the coffee. That point where the grinds seem to expand and bubble with a fantastic release of aroma. It is thought that the earth’s early atmosphere (and the atmosphere around other worlds) could have been helped to form by similar processes of outgassing from rocks in the interior of the earth. The carbon cycle also involves the outgassing of carbon dioxide from mid-ocean ridges and the volcanoes on the earth.

As the water falls and the aroma rises, we’re reminded too of petrichor, the smell of rain. How we detect smell is a whole other section of physics. Petrichor is composed of aerosols released when the rain droplet hits the ground. Similar aerosols are produced when rain impacts seawater and produces a splash. These aerosols have been linked to cloud formation. Without aerosols we would have significantly fewer clouds.

4. Percolation:

A close up of some milk rings formed when dripping milk into water. Similar vortex rings will be produced every time you make a pour over coffee.

Percolation is (almost) everywhere. From the way that water filters through coffee grounds to make our coffee to the way electricity is conducted and even to how diseases are transmitted. A mathematically very interesting phenomenon with links to areas we’d never first consider such as modelling the movements of the stock exchange and understanding the beauty of a fractal such as a romanesco broccoli.

But then there’s more. The way water filters through coffee is similar to the way that rain flows through the soil or we obtain water through aquifers. Known as Darcy’s law, there are extensive links to geology.

Nor is it just geology and earth based science that is linked to this part of our coffee making. The drips falling into the pot of coffee are forming vortex rings behind them. Much like smoke rings, they can be found all around us, from volcanic eruptions, through to supernovae explosions and even in dolphin play.

5. In the mug:

Rayleigh Benard cells in clouds
Convection cells in the clouds. Found on a somewhat smaller scale in your coffee.
Image shows clouds above the Pacific. Image NASA image by Jeff Schmaltz, LANCE/EOSDIS Rapid Response

Yet it is when it gets to the mug that we can really spend time contemplating our coffee. The turbulence produced by the hot coffee in a cool mug prompts the question: why does stirring your coffee cool it down but stirring the solar wind heats it up?

The convection cells in the cooling coffee are seen in the clouds of “mackerel” skies and in the rock structure of other planets. The steam informs us of cloud formation while the condensation on the side of the cup is suggestive of the formation of dew and therefore, through a scientific observation over 200 years ago, to the greenhouse effect. The coffee cools according to the same physics as any other cooling body, including the universe itself. Which is one reason that Lord Kelvin could not believe that the earth was old enough for Darwin’s theory of evolution to have occurred. (Kelvin was working before it was known that the Sun was heated by nuclear fusion. Working on the basis of the physics he knew, he calculated how long the Sun would take to cool down for alternative mechanisms of heating the Sun. Eventually he concluded that the Sun was too young for the millions of years required for Darwin’s theory to be correct. It was the basis of a public spat between these two prominent scientists and a major challenge to Darwin’s theory at the time).

 

Of course there is much more. Many other links that take your coffee to the fundamental physics describing our world and our universe. Which ones have you pondered while you have dwelt on your brew?

Categories
Allergy friendly cafe with good nut knowledge Coffee review Observations Science history Sustainability/environmental

Creating movement at Kahaila, Brick Lane

coffee Brick Lane, against trafficking, women's project, charity
Kahaila on Brick Lane. A small shop front concealing a large interior.

It’s always great to find an independent café selling good coffee (and cake) while giving something back to the community. It’s a reason to seek out small businesses rather than chains. Kahaila café on Brick Lane absolutely falls into this category. Although I had visited Kahaila previously, on that occasion the beigels (almost) next door were ‘calling’ and I did not give this space the time it deserved. This time however, the beigel shop had come first allowing us plenty of time to sit and ponder in this spacious café.

I had an espresso (toffee notes) together with a raspberry topped vegan chocolate cake (confidently nut free). There were a large variety of alternative cakes on offer at the counter along with cold drinks should you want them in summer. The espresso was a very enjoyable accompaniment to the cake (or should the cake be an accompaniment to the coffee?). The large room at the back of the café offered plenty of seating and was well lit by sunlight streaming through a window built into the roof.

coffee cake, Kahaila, Brick Lane
Raspberry vegan chocolate cake with espresso. The blue cup can affect the way the coffee is experienced.

One thing that immediately makes this café different from many others, is the fact that there is a donation box on the wall. Information cards on the table tops explain that Kahaila works as a charity providing education and support to women prisoners, helping women who have experienced abuse or are vulnerable in other ways to learn skills in a bakery and also offering a safe house for women who have been victim to exploitation and trafficking. All in all a café in which it would be good to spend more time (if only it were closer!). And assuming that the cakes are from the bakery, it forms a giving-circle with some great bakes on offer.

The vegan chocolate cake was a case in point. Beautifully presented, balanced in taste, in a perfectly sized portion to enjoy with a coffee. Ordinarily cakes require butter and eggs, how did the bakers manage it? Of course, a recipe was not given at the counter, nor would it necessarily have been particularly helpful to answer the question. Because the answer, if one exists, is a mix of their experimentation with flavours and textures together with an advancing knowledge of what each cake ingredient does.

sugar in a jar, Kahaila
The way these sugar cubes stacked in the jar and the sugar granules at the bottom reminded me of something. I was not able to put my finger on what it was…

Consider the egg yolk. In addition to adding mouth feel and texture to the cake or biscuit, the yolk contains emulsifying agents, such as lecithin, which act to stabilise suspensions of oil in water¹. With a hydrophobic section at one end of the molecule and a hydrophilic section elsewhere, the presence of lecithin molecules in the mixture prevents droplets of oil from grouping together and coalescing so as to separate into oil/water layers. By experimenting with non-egg based lecithin, a baker can combine different flavours and textures to produce a vegan cake.

A few years ago, a somewhat similar problem was vexing materials scientists: how to remove toxic lead from piezoelectric devices. Piezoelectric devices expand or contract when they are subjected to an electric field. This makes them useful for moving mechanisms such as watches and even as a way to open/close hot water valves in coffee machines. The problem was that one of the best piezoelectric materials we had was lead zirconate titanate (or PZT for short). In order to make the PZT material, the lead had to be sourced in quite large quantities and yet, being toxic and environmentally damaging, it was considered advantageous (even necessary) to remove the lead.

doorway in Kahaila
A painted doorway inside Kahaila in combination with flowers in front suggests a thought train about the way bees see.

However, just like the egg yolk in cookie recipes, you cannot just remove it and produce the same sort of effect in the finished product. You need to understand what role the lead was playing in order to be able to substitute it properly and even then, the effect may not be as good as the original ingredient (without some tweaking elsewhere in the recipe also). Consequently a lot of research has been undertaken in order to find new piezoelectric materials and to understand them so as to optimise the piezoelectric effect. Partly this involves adding the new ingredients slowly to understand their role. Partly it involves changing the growth conditions (somewhat equivalent to the baking temperature) in the crystals that are made. Always it involves experimenting and understanding the role that different ingredients play in our final devices.

Research is still ongoing to find a good substitute for lead in piezoelectric devices. But it goes to show that there are many connections between diverse areas of our experience. Unlike research into piezoelectric materials though, the advantage in experimenting with cakes is that the test of the result is in the eating. Now to experiment with some biscuit recipes…

Kahaila is at 135 Brick Lane, E1 6SB

¹On Food and Cooking, the science and lore of the kitchen, Harold McGee

 

 

 

Categories
Allergy friendly cafe with good nut knowledge Coffee review Coffee Roasters Observations Science history Sustainability/environmental

Paradigm shifts at The Observatory, Marchmont St

lines on a table, parallax
An espresso using coffee from Redemption Roasters and a chocolate brownie. What more could you ask?

Many years ago, there was an aquatics shop on the site of what is now The Observatory, a combined photography gallery and coffee shop. Although there is plenty to see through this glass fronted café, you do not feel that you are in a goldfish bowl so much as that this is a space created for you to slow down and contemplate your surroundings. The large rooms and comfortably spaced tables do, of course, give the opportunity for people watching: when we visited, there were people working with their laptops on some tables while others were having business meetings. Then there are the photographs, currently (though only for a few more days), an exhibition of photographs from the 60s and 70s by John Bulmer.

The coffee is supplied by Redemption Roasters and I enjoyed a dark, toffee like espresso with a very good slice of a chocolate brownie (confidently nut free). Several types of milk are on offer for milk based coffee drinks as well as a selection of cold drinks, together with a wide variety of cakes. It is definitely a place to return to when in the area.

coffee the Observatory, TLR
Cakes on the counter at The Observatory. Note the twin lens reflex “camera” on the shelf behind the counter.

While waiting for my coffee, I noticed the grain of the wood in the table. Dark, almost parallel lines on a lighter wood. You can see it in the photograph. Looking around the café, such parallel lines were everywhere. Planks of wood lined the walls, vertical, parallel lines stretching up to the ceiling. In the room towards the back of the café, the ceiling also had parallel lines on it which, given I was viewing them from a distance, appeared to converge with the effect of perspective. It is difficult to know whether these effects were deliberate in a gallery/café so dedicated to an exploration of the visual but I like to think that the small twin lens reflex camera on a shelf (which sadly turned out to be a pencil sharpener on sale) was a nod to this idea shifting lines of sight and perspective.

By definition, two parallel lines are lines that will never meet, no matter how far the lines are extended. If they were to meet at any point, they would not be parallel. This offers a way of measuring the distance to stars as well as providing food for thought on our way of seeing our place in the universe. The idea is that of parallax. If you were to measure the relative position of a star against the background of stars at midnight in June, and then go back to measure the same star relative to the same background at midnight six months later in December, you may find that the star seemed to have moved. The amount it moves, its parallax, is determined by how close the star is to the earth (have a look at the diagram).

parallax and coffee
As the point of view moves around the Sun (represented here by a V60), the closest coffee bean appears to shift relative to the background coffee beans.
The lower two diagrams are an attempt to see things from the perspective of the Lego person separated by “6 months” distance.

Take as an example the star Sirius. Located relatively close to us at a mere 8.6 light year distance, Sirius has a parallax of 0.38 arc seconds or, equivalently, about 0.0002 of the angular diameter of the moon viewed from Earth¹. Stars that are further away are going to have an even smaller parallax until the parallax becomes so small as to be difficult to measure. Even for nearby stars such as Sirius, the small size of the effect meant that it wasn’t until 1838 that it was first measured. Which may be part of the reason that the theory of Aristarchus (310-230BCE) never caught on when it was proposed.

Aristarchus was an early proponent of the idea that the Earth went around the Sun (and not the other way around). The Greek’s realised that if Aristarchus was correct, there should be a parallax effect for the stars viewed at different times of the year (every 3 months)¹. Unfortunately, the Greeks also considered that the stars belonged to a thin shell, so effectively all the stars were at the same distance from the Earth. Consequently, the parallax effect that they looked for (if Aristarchus was correct) was for two stars on that shell to move first towards then away from each other as the Earth circled the Sun¹. They never observed this effect and so considered the heliocentric theory “inconsistent with observations”¹. Although we would now say that the fact that they didn’t observe any such shift is consistent with the huge distances to the stars (and therefore small shifts) involved, for the ancient Greeks it was a problem. As Archimedes commented, if Aristarchus’ theory had been true, it would mean that the universe was much bigger than they at that time thought.

Guardini has written about the effect on the human psyche of this changing idea of the universe and our own place in it (from the Greek’s idea of finite and limited, to finite with a God outside, to infinite and back towards finite but incredibly large). Do our ideas, our models, about the universe affect not only how we interpret the experimental evidence we see, but also our way of being, our behaviour towards our fellow humans and our planet?

Viewing things from a different angle, seeing the effect of a change of line of sight, it brings us right back to the photography in the gallery and the twin lens camera on the shelf. There are certainly many things to contemplate while enjoying a coffee at The Observatory. Which means a second espresso should definitely be a possibility.

You can view some street photography, including some photographed with a twin lens Microcord TLR camera on Artemisworks gallery here.

The Observatory is at 64 Marchmont St, WC1N 1AB

¹Astronomy, the evolving universe (6th edition), Michael Zeilik, John Wiley & Sons, 1991

 

Categories
General Observations Science history Sustainability/environmental Tea

Why politicians should drink loose leaf tea

Coffee Corona
Notice the rainbow pattern around the reflected light spot?
The universe is in a cup of coffee but to understand rising sea levels, it’s helpful to look at tea.

The universe is in a glass of wine. So said Richard Feynman. It has been the focus of this website to concentrate instead on the universe in a cup of coffee, partly because it is much easier to contemplate a coffee over breakfast. However there are times when contemplating a cup of tea may be far more illuminating. Such was the case last week: if only a politician had paused for a cup of tea before commenting on rising sea levels.

There are many reasons to drink loose leaf tea rather than tea made with a bag. Some would argue that the taste is significantly improved. Others, that many tea bags contain plastic and so, if you are trying to reduce your reliance on single-use plastic, loose leaf tea is preferable. Until last week though, it had not occurred to me that brewing a cup of tea with a mesh ball tea infuser (or a similar strainer) was a great way to understand the magnitude of our problem with rising sea levels. If a stone were to enter a pond, the pond-level would rise; if a spherical tea strainer (full of loose leaf tea) were to be placed in a cup, the soon-to-be-tea level would rise.

Clearly, because we know our physics, we would not place a strainer of tea into an existing cup of hot water as we know the brewing process relies on diffusion and turbulence, not just diffusion alone. So what we more commonly observe in the cup is actually a tea-level fall as we remove the straining ball. Fortunately, we can calculate the tea level decrease, h:

A schematic of the tea brewing process

My cylindrical tea mug has a radius (d) of 3.5cm. The radius (r) of the mesh ball is 2cm. We’ll assume that the tea leaves completely expand filling the mesh ball so that the ball becomes a non-porous sphere. Clearly this bit is not completely valid and would anyway create a poor cup of tea, but it represents a worst-case scenario and so is good as a first approximation.

Volume of water displaced = volume of mesh ball

πd²h = (4/3)πr³

A bit of re-arrangement means that the height of the tea displaced is given by

h = 4r³/(3d²)

h = 0.87 cm

This answer seems quite high but we have to remember that the mesh ball is not completely filled with tea and so the volume that it occupies is not quite that of the sphere. Moreover, when I check this answer experimentally by making a cup of tea, the value is not unreasonable. Removing the mesh-ball tea strainer does indeed lead to a significant (several mm) reduction in tea level.

Earth from space, South America, coffee
Assuming we are truly interested in discovering more about our common home, we can gain a lot through contemplating our tea.
The Blue Marble, Credit, NASA: Image created by Reto Stockli with the help of Alan Nelson, under the leadership of Fritz Hasler

What does this have to do with politicians? Last week a congressman from Alabama suggested that the observed rising sea levels could be connected with the deposition of silt onto the sea bed from rivers and the erosion of cliffs such as the White Cliffs of Dover. If only he had first contemplated his tea. Using a “back of the envelope” calculation similar to that above, it is possible to check whether this assertion is reasonable. As the surface area of the oceans is known and you can estimate a worst-case value for the volume of the White Cliffs falling into the sea, you can calculate the approximate effect on sea levels (as a clue, in order to have a significant effect, you have to assume that the volume of the White Cliffs is roughly equal to the entire island of Great Britain).

Mr Brooks comments however do have another, slightly more tenuous, connection with coffee. His initial suggestion was that it was the silt from rivers that was responsible for the deposition of material onto the sea bed that was in turn causing the sea level to rise. About 450 years ago, a somewhat similar question was being asked about the water cycle. Could the amount of water in the rivers and springs etc, be accounted for by the amount of rain that fell on the ground? And, a related question, could the amount of rain be explained by the amount of evaporation from the sea?

The initial idea that the answer to both of those questions was “yes” and that together they formed the concept of the “water cycle” was in part due to Bernard Palissy. Palissy is now known for his pottery rather than his science but he is the author of a quote that is very appropriate for this case:

“I have had no other book than the heavens and the earth, which are known to all men, and given to all men to be known and read.”

Reflections on a cup of tea.

Attempts to quantify the problem and see if the idea of the water cycle was ‘reasonable’ were made by Pierre Perrault (1608-80) in Paris and Edmond Halley (1656-1742) in the UK. Perrault conducted a detailed experiment where he measured the rain fall over several years in order to show that the amount of rain could account for the volume of water in the Seine. Halley on the other hand, measured the amount of evaporation from a pan of heated water and used this value to estimate the evaporation rate from the Mediterranean Sea. He then estimated the volume of water flowing into that sea from a comparison to the flow of the water in the Thames at Kingston. Together (but separately) Perrault and Halley established that there was enough water that evaporated to form rain and that this rain then re-supplied the rivers. Both sets of calculations required, in the first place, back of the envelope type calculations, as we did above for the tea-levels, to establish if the hypotheses were reasonable.

If you missed the coffee connection, and it was perhaps quite easy to do so, the question that Halley studied concerned the rate of evaporation as a function of the water’s temperature. This is something that is well known to coffee drinkers. Secondly however, one of Halley’s experiments about the evaporating water was actually performed at a meeting of the Royal Society. It is known that after such meetings, the gathered scientists would frequently adjourn to a coffee house (which may have been the Grecian or, possibly more likely, Garraways). As they enjoyed their coffee would they have discussed Halley’s latest results and contemplated their brew as they did so?

What this shows is that sometimes it is productive to contemplate your coffee or think about your tea. Notice what you observe, see if you can calculate the size of the effect, consider if your ideas about the world are consistent with your observations of it. But in all of it, do pause to slow down and enjoy your tea (or coffee).

Categories
Coffee review Observations Science history slow Tea

Pushing it at Lever and Bloom, Bloomsbury

Lever Bloom coffee
Lever and Bloom under a blue sky.

Does a take-away need to be rushed? A coffee so quick that there is ‘not enough time to prepare a flat white’? Are we always so preoccupied with the distractions of our day that we consume our coffee merely for the pleasant caffeine kick that it provides?

Lever and Bloom in Bloomsbury is a great example of why this does not have to be, indeed should not be the case. Since 2015, Lever and Bloom have been operating out of a cart on Byng Place close to UCL and a number of other research institutes. The character of the surroundings really does affect the space and both times I have been to Lever and Bloom I have either met interesting people in the queue or overheard snippets of intriguing conversation about history I know nothing about.

Coffee Bloomsbury reusable coffee cup
Long black in a keep-cup and telephone box in Byng Place.

It is easy to spot the coffee cart in the corner. Firstly, it is bright red and quite eye catching but secondly because of the queue forming in front of it. Don’t be put off though, the queue moves very quickly so you won’t wait long even if you are in a rush. Queueing however does give you an opportunity to peer into the cart. Space is used extremely efficiently. with each piece of equipment  apparently having its own perfect home. It reminded me of a childhood game of trying to fit in as many objects as possible into a matchbox. A cabinet on the table in front of the cart displays cakes including cinnamon rolls (sadly sold out by the time I arrived in the afternoon). It was also nice to see the number of people ahead of me in the queue who were using re-usable cups.

The lever of the name refers to the (Izzo Pompei) lever espresso machine that is used on the cart. It was fascinating to watch the ground beans being carefully tamped and the lever being pulled to prepare the espresso. Although there is some debate as to the optimum water pressure needed for preparing an espresso, the standard pressure is 9 Bar; water is pushed through the tamped grinds at nine times the atmospheric pressure at sea level. Watching these espressos being prepared reminded me of preparing ceramic samples of an interesting magnetic material a few years ago. We were interested in the electrical properties of a class of materials called manganites. To prepare the materials for measurement we first had to grind the pre-cursor powders (but with a pestle and mortar, no burr grinders) and then, after a couple of further preparatory steps, press them into a pellet ready for firing in the oven. The machine used for pressing the pellets had a lever, not dissimilar to that on the espresso machines and yet, the pressure that we used for the pellets was roughly 1000 Bar. This high pressure was needed so that dense pellets of manganite material would be formed when we heated it in the oven (typically at 1200 ºC). Just as a good espresso depends on the pressure and then the temperature and time of extraction, so the properties of the pellet would be affected by the pressure and then temperature and time of firing in the oven.

Portland Stone fossils
Fossils in Portland Stone. It is astonishing what is revealed when you slow down and notice the buildings around you.

Similar effects affect the rocks of the earth, something that is particularly visible in the area around Lever and Bloom. A geological walking tour around Byng Place, Tottenham Court Road and towards the British Museum illustrates this particularly well. Behind Lever and Bloom, the church of Christ the King is built from Bath Stone. An oolitic limestone, this type of rock is formed of compressed sand and bits of shell. Much as the manganite samples of my study before they were fired in the oven but of a more interesting colour. Heading towards Gower St and the impressive UCL building is made of Portland Stone. Another limestone, this building material is a goldmine for urban fossil explorers. Continuing the walk, on Tottenham Court Road, the Mortimer Arms pub is fronted by quartzite while Swedish Green Marble adorns 90 Tottenham Court Road. Quartzite and Marble are both types of metamorphic rock, formed by pressing together different precursor materials at high pressure and temperature. Other types of marble can be seen on the tour, suggesting the influence of pressure and temperature of formation on the rock structure as well as the type of precursor rock.

It would seem that such a walking tour is perfectly timed for a longer style of coffee, perhaps a latte (in a re-usable cup of course) from such a centrally located place as Lever and Bloom. And of course, assuming you are using a re-usable, there is even more to ponder. The pressure and temperature during the manufacture of the re-usable cup would have affected the properties of the cup (or in my case, glass).

Let me know if you spot any interesting rocks or fossils during your time at Lever and Bloom but whatever you do, I hope that you can enjoy your coffee and then slow down to enjoy it a bit more.

Lever and Bloom is at Byng Place, WC1E 7JJ