Categories
Coffee cup science General Home experiments Observations Tea

Developing, a new way to slow down with coffee

Instant gratification takes too long.

Carrie Fisher

What do you think of instant coffee? Does it, as Carrie Fisher may have suggested, take too long? Or perhaps you think that instant coffee is a bad idea, coffee ought instead to be prepared well and slowly to be enjoyed at a leisurely pace. Many readers of this website are probably of the latter school of thought and yet I would like to offer a slightly different perspective. There is indeed a way that instant coffee can be used to really slow down and to re-evaluate our view of the world: Instant coffee makes a good, or at least adequate, photographic film developer.

developing photographic film in instant coffee
The developing fluid – the instant coffee granules have nearly dissolved.

The caffeine in the coffee acts as a reducing agent for the film (so tea should also work). Instant was suggested over filter coffee in online recipes owing to the greater control over the amount of caffeine in the brew (it would be far easier to get reproducible results mixing 5 teaspoons of instant into the developer than 300ml of whichever coffee is your brew of the day). So, as a first try, it is worth keeping to previously tried-and-tested recipes, in this case from photo-utopia.

5 heaped teaspoons of instant coffee

2 level teaspoons of washing soda

300 ml of water at around 25C.

washing soda, available in supermarkets
The second ingredient that you need to develop your photographic film in coffee – washing soda.

The washing soda (sodium carbonate, Na2CO3) can be purchased in many supermarkets where it is known as a more environmentally friendly laundry agent (it is not the cooking ingredient sodium bicarbonate, that apparently does not work). It is used to ‘activate’ the reducing agent. I admit to being a bit hazy on what that actually means. Where you get your instant coffee from is up to you.

The photos show the washing soda and then coffee being added to the water. Do try to rid yourself of any ideas about developing film amidst the lovely fragrance of coffee coming out of the developing tank. Something in the reaction between the washing soda and the coffee stinks. It was not as bad as I was anticipating (as I had read the warnings of the smell elsewhere) but rest assured, it is not pleasant!

instant coffee film developing fluid
The washing soda is already dissolved in the water here but the coffee has just been added. You need to dissolve the coffee fully for it to be a good developing fluid.

For detailed instructions about developing with the solution, please see photo-utopia but briefly, developing the film took 30 minutes with one inversion every 30 seconds. If you have ever tried sitting, developing film for 30 minutes doing nothing but inverting the developing tank every 30 seconds you will know that this is quite an exercise in slowing down. Are those images that you have been taking on your camera going to come out? Will they be under-developed, over-developed? Does coffee really work as a film developing fluid?

After 30 minutes the film was put into a water stop bath and then fixed with Ilford Rapid Fixer (although it is possible to use salt-water as a fixer, I thought it best to start by experimenting with the developing fluid alone first). A further bit of washing and the film was hung out to dry. This meant more patience, although we could see the images on the film, it was not possible to scan them until the film had thoroughly dried (we left it overnight).

What about the results? Well, the four images below are from the roll of Fuji Neopan 400 film that was developed with the coffee. We had to adjust the scanning a bit as the film was somewhat lightly developed (a higher concentration of caffeine or a longer developing time was needed), but you can see that the images have not come out too badly. It is truly possible to slow down and see things in a different way with instant coffee, but maybe not by drinking it.

Cogs, Wimbledon Common, Windmill, Contact S2b, instant coffee and washing soda developer
Cogs on Wimbledon Common, developed with coffee.
Brighton shellfish, mussels, prawns, cockles, whelks, jellied eels, instant coffee
Shellfish trailer, Brighton, developed in coffee.
Merry-go-round and pier developed with coffee
Brighton beach, developed in coffee.
Bench with heads developed in coffee
Chelsea Embankment, developed in coffee.

Next time I plan to swap the instant coffee for a brewed batch and see how that comes out. More photos will be uploaded from time to time, probably to a special “coffee pictures” page on the website (yet to be created). And if you have tried developing photographic film in coffee, please do share any images that you have developed (with coffee or tea, instant or otherwise).

I am incredibly grateful to ArtemisWorks Photography for helping with all aspects of this project and for fantastic patience when confronted with some daft questions. You may also be interested to see ArtemisWorks’ own café work, photographing London’s older style “caffs” many of which have now disappeared, the café galleries can be found here.

 

Creative Commons License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Categories
Coffee cup science Home experiments Observations

Aroma and batch brew

Isn’t it great to find a lovely, freshly brewed, hot cup of aromatic coffee in a quirky little café? Which bit do you enjoy most? That special aroma as you inhale the steam above your cup before sipping the coffee to compare the taste with the smell?

2-furfurylthiol
Representation of 2-furfurylthiol. Amazing what can be found (briefly) above your coffee cup.

As you may imagine, a fair bit of research has gone into working out which chemicals are responsible for that just brewed aroma (for a review see here). More than 800 volatile chemicals have been identified as key to the aroma of coffee of which the most important for that freshly roasted and brewed coffee smell seems to be 2-furfurylthiol. Although it has a complicated name, it’s got a fairly simple chemical representation (shown right). Responsible for the “roast-y, sulphur-y” smell in freshly brewed coffee the problem for us, and for 2-furfurylthiol, is that it is not very stable. In fact, in experiments in which a freshly brewed coffee was stored in a thermos flask to keep it warm, the concentration of 2-furfurylthiol in the space just above the coffee decreased by more than 50% within 20 minutes of storage. After an hour, the concentration of 2-furfurylthiol had decreased to less than a quarter of its original amount and shortly after that, it was gone completely (study can be found here). (Other volatile aromatics decreased similarly (here)).

So if you were to brew a coffee, put it in a flask to keep it warm and then drink it within 20 minutes, you will have lost more than half of the lovely coffee smell. And if, heaven forbid, you were to take it from its thermos 1hr after brewing, almost all those wonderful aromatics would have decayed away.

Lundenwic coffee
This was not a batch!
Could you taste the difference between freshly made drip brewed coffee and batch brew?

Why is this important? Well, it’s about batch brew. You may have noticed that batch brew is increasingly popular in many cafés. Offered as a way of getting a filter coffee ‘freshly’ prepared for you without the hassle of actually having to have the filter made there and then. Different establishments try to get around the inevitable aromatic loss by changing the batch every 30 minutes or storing it in a ‘low oxygen’ environment, but is this enough? Do we need some blind taste-tests on batch brew?

A problem is that the decay of 2-furfurylthiol is not just due to oxidisation. Sadly for us, its decay seems to be intimately tied to other qualities that we appreciate in the coffee, the melanoidins (that make the coffee brown) and other chemicals formed during the roasting process (the phenols and the quinones). So even in a low oxygen environment, that aromatic 2-furfurylthiol is going to react with the other chemicals that make coffee great to make batch brew less great.

weather, bubbles, coffee, coffee physics, weather prediction, meteorology
It’s all in the 2-furfurylthiol. That fantastic coffee aroma is due to a number of unstable aromatic compounds that rapidly decay after the coffee is brewed.

That’s the theory. Clearly many cafés have taste-tested the batch brew and found that it doesn’t make enough difference to be concerned about. And in practice there are many other factors that may make a batch brew better than a fresh drip coffee you can make at home (though it would be great if someone could point some of these out for me!), what we need is a citizen science type taste test. A blind test of the same bean, prepared as a fresh filter and a cup at the end of the storage life of the batch. They will most likely have different temperatures so this would need to be considered, either by pouring very little of each (so the fresh-filter cools quickly), or waiting for 5 minutes for your cup of fresh-filter to cool to the batch temperature. Do they taste the same? Do they smell the same?

So this is a call for some science experiments “in the field” (and seemingly for everyone to drink more coffee). If you enjoy a cup of “batch” and are a regular at a café, please do drop me a note to share your blind taste-test experiences. If you are a café, any tips you have as to how to store warm coffee for longer than 20 minutes without compromising the aroma would be very interesting to hear (though if you find a café storing batch for longer than approx. 30 minutes, I would seriously consider going somewhere else!). And if you just drink coffee at home, why not get involved too, prepare a filter coffee that you store in a thermos and another a bit later ‘fresh’, get someone to help you so that you taste them ‘blind’ and let me know what you think. The comments section below is always available, otherwise I can be found on Twitter and Facebook and will happily debate there.

Enjoy your coffee!

 

Categories
Coffee cup science Coffee review General Home experiments Tea

The idea of a coffee at A Wanted Man

We cannot do without a view, and we put up with an illusion, when we cannot get at a truth“.

A wanted man, Chelsea, coffee cup
A wanted man becomes visible under thin coffee.

A Wanted Man on Chelsea’s Kings Road is unusual in many respects. Firstly, never before have I been to an espresso ‘canteen’, but then, neither have I had a coffee in a café that is part coffee-shop part waxing salon. While both wax based hair removal and coffee rely on bees, this is surely not the connection between these two enterprises. Nonetheless, once your coffee-loyalty card is full, you can choose: free brow shape, bikini wax or coffee. The coffee comes from Common Man Coffee Roasters in Singapore so it would be interesting to know how it was transported to Chelsea in order to retain its freshness, surely each batch is not flown in? On our first visit, we had a rich and smooth long black, a lovely aromatic banana bread and a good hot chocolate (with soy milk). There is plenty of seating in the front of the café and some more towards the back near the bar which was all fairly empty on our first visit but far more crowded (with singly-occupied tables) on my second visit (see below).

As I drank my coffee, hidden wording became visible at the bottom of the cup. “A wanted man” appeared beneath the coffee when the coffee was sufficiently thin. By tilting the cup, this “critical” thickness could be estimated, as you can see in the photos. Ah-ha I thought, the physics bit of this cafe-physics-review will be easy! The absorption of light (which we could measure by the visibility of the writing at the bottom of the cup) is directly proportional to the thickness of the absorbing liquid, the coffee. This is the Beer-Lambert law which describes how light is absorbed through substances such as coffee in which there are molecules and bits of sediment that absorb light (which is ultimately why coffee appears brown). Could I experimentally verify this bit of the Beer-Lambert law by somehow quantifying the visibility of the wording as a function of cup-tilt angle?

a tilted coffee cup at a wanted man
Absorption is a function of thickness and concentration

Before I had thought that far, I had finished the coffee, however the second part of the Beer-Lambert law could be tested by having another coffee on a separate occasion. The other part of the Beer-Lambert law states that the absorption (that’s the (in)visibility of the wording on the cup in this case) is also directly proportional to the concentration of the absorbing molecules/sediment. This makes sense, weak coffee is far more transparent than overly extracted coffee. On my second visit, the coffee tasted slightly stronger, a bit different from my memories of the first occasion. Did the “A wanted man” become visible at a different tilt angle? I would guess – or perhaps that should read ‘hypothes-ise’ – that the angle on the second occasion would have to be lower (that the coffee would have to be thinner generally).

However, while sipping my coffee (before getting to the tilt-angle-test) and looking around the second time I noticed that all along the wall where previously there had been plenty of empty tables, each one was now singly occupied by somebody using a laptop, a phone/tablet or in one case, both of these items together. This second time, my mind started wandering into more social issues, while looking at our screens and immersed in social media, are we able to see more or less, than our less absorbed fellow citizens? Does social media clarify the detail or cloud important aspects of our understanding?

Beer-Lambert applied to twitter and Facebook
Does social media do this to you? The light absorption of a coffee is determined by the thickness of the coffee and concentration of absorption sites within it.

After considering these two points, it became clear that in some ways they are connected. Admittedly a loose connection, and not one that is strictly scientific but perhaps it’s worth ‘running with it’ for a bit and seeing if it leads anywhere. Just as with the Beer-Lambert law with coffee, the more ‘interacting sites’ (or absorption sites) we encounter on social media, the harder it is to see through to the bottom. Twitter, Facebook etc. can be enormously helpful for widening our networks and learning about new things. But, as has been frequently pointed out elsewhere, they can also become quite unhelpful when we are in an “echo chamber” or when we think that points can be made in mere soundbites. Is it possible that the more absorbing and reflecting sites that we encounter, the harder it is to see anything to any greater depth? What we need is time-out, for self-reflection and for considering points made by others, on Twitter, Facebook and elsewhere.

Perhaps the best way to end such a post is with a long quote by somebody else. In fact, the same person (and in the same book) as was quoted at the beginning of this article. Perhaps it would be something to consider while we drink our coffees and hover over the ‘retweet’ or ‘share’ button. Are we helping to probe the depths of our cup by the links we share, or are we merely adding to absorption sites in soundbites in our networks?

It requires a great deal of reading, or a wide range of information, to warrant us in putting forth our opinions on any serious subject; and without such learning the most original mind may be able indeed to dazzle, to amuse, to refute, to perplex, but not to come to any useful result or any trustworthy conclusion. There are indeed persons who profess a different view of the matter, and even act upon it. Every now and then you will find a person of vigorous or fertile mind, who relies upon his own resources, despises all former authors, and gives the world, with the utmost fearlessness, his views upon religion, or history, or any other popular subject. And his works may sell for a while; he may get a name in  his day; but this will be all. His readers are sure to find on the long run that his doctrines are mere theories, and not the expression of facts, that they are chaff instead of bread, and then his popularity drops as suddenly as it rose.

John Henry Newman, The idea of a university.

A Wanted Man can be found at 330 Kings Road, London

Categories
Coffee cup science General Home experiments Science history Tea

Reading tea leaves with Einstein and my great-grandmother

tea pot science
It’s not just tea, Einstein is famous for some other physics too

Ask anyone what Albert Einstein is famous for and you’ll probably (hopefully) hear that he came up with the theory of relativity (special and general). Perhaps you may also be told that he came up with a little theory explaining the photoelectric effect for which he won the Nobel prize in 1921. Maybe, if you have read this website before, you will know that he contributed to our understanding of Brownian motion, which is a phenomenon that is frequently found in a coffee cup. But it turns out that Einstein wrote another paper, far more important than any of these others, which was about tea. Or at least, I suspect my great-grandmother would have found it more important than any of these others as it coincided with a special hobby of hers, reading tea leaves.

It seems that my great-grandmother used to enjoy reading tea-leaves. Whether it was something she had learned as a child or merely used as an interesting trick to perform at family functions, stories of her examining the patterns formed by swirling tea leaves in a cup have come down to us in younger generations. Einstein too had noticed the patterns formed by the tea leaves in the cup and had observed a problem. The problem is this: If you drink a cup of (inadequately filtered) loose leaf tea and stir it, the tea leaves collect in a circle in the middle of the base of the cup. At first this may appear counterintuitive. When we stir things, don’t things fly outwards towards the edge of the cup rather than inwards to the centre of the circle? Why is it that the leaves collect in the middle?

Thames, NASA image
How do rivers erode? What causes a river to meander? The meandering Thames, photographed by NASA, Image courtesy NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team

For Einstein, this tea leaf problem was connected to another phenomenon, the erosion of rivers. But it turns out that the problem is also linked to issues found in beer brewing and blood tests, and it seems, in how to poach an egg. To see the solution and therefore the connections, we need to think a bit more about how water flows. One of the brilliant lines in Einstein’s paper starts “I begin with a little experiment which anybody can easily repeat.” This experiment is to obtain a flat bottomed cup of tea with some tea leaves at the bottom of it. Now stir the tea and watch how the leaves settle, Einstein continues “the leaves will soon collect in the centre of the bottom of the cup“.

The explanation is connected with the fact that at the walls of the cup, the liquid (tea) is being slowed down by the friction between the walls and the tea. Secondly, as the tea is stirred, the surface of the tea becomes concave with a distinct dip in the centre of the swirling tea. The result of all this is that a secondary rotation is set-up where the tea flows down the sides of the cup, along the bottom and then back up in the centre and once more to the sides (have a look at the diagram, some things are easier with pictures). As they are carried along with the water, the tea leaves move towards the centre of the cup but then, being too heavy to rise again with the tea up to the centre of the cup, they stay on the bottom forming a circular patch of tea leaves.

adaptation from Einsteins paper
The secondary circular flow set up in a tea cup when it is stirred leads to a circular deposition of tea leaves (figure adapted from Einstein’s 1926 paper).

When you think about how water flows as it goes around a bend in a river, you could perhaps imagine a similar secondary flow being set up but this time from the inner edge of the bend to the outer edge and back down (so, like half a tea cup). As the water is going to be moving fastest at the outer edge, just before it plunges down towards the bottom of the river in this secondary cycle, any river erosion is going to be most noticeable on the outer edge of the bend.

It seems the effect is also used in beer brewing in order to introduce a greater concentration of hops into the brew, and to separate different types of blood cell in blood tests. So this just leaves the poached eggs. How do you poach eggs? If you have a proper poacher perhaps you get neat eggs each time but for those of us without them, poached eggs tend to be a messy cooking project. But worry no longer! Just as tea leaves collect in the centre of a tea cup, so will the egg if you ensure that your pan of boiling water is swirling around the central axis before you put your egg in. Cooking helped by physics, perfect.

For reasons of full disclosure, I should emphasise that I have only recently found this suggestion for cooking eggs ‘theoretically’ and not yet tested it. So, if you were looking for reasons to drink loose tea, or wanted to poach an egg without a poacher, perhaps you could try Einstein’s little experiment and let me know how you got on, I’d love to hear your tea leaf readings and see your poached egg results.

Categories
Coffee cup science Home experiments Tea

Scratching the surface in coffee week

reflections, surface tension
The effects of surface tension can be seen in the light reflected from a coffee

UK Coffee week is once again upon us meaning that all week we can be justified in thinking about, drinking, appreciating and celebrating coffee. And of course, as soon as we start to do this, we realise we have to drink, appreciate and celebrate water which is, ultimately, what really makes most of the cup of coffee. So UK Coffee Week raises money for Project Waterfall which is a charity that brings clean water to coffee growing communities. Giving something back by enjoying something good.

In keeping with the water theme, this week The Daily Grind is all about water, including an experiment that enables you to make a hole in it. As this is also the week between Palm Sunday and Easter, perhaps we could call the post “Holey water for Holy Week”.

But moving quickly to the experiment. While drinking your coffee, you may have noticed how around the edge of the cup, the coffee appears lighter, not quite so dark, as in the interior. The coffee is being bent upwards at the edge of the cup by the surface tension of the water in the coffee. Now, what happens if you add alcohol to the coffee? If you do this in your coffee cup you may well end up with an Irish coffee which may provide even more of an excuse to celebrate your coffee drinking, but if you were to put your coffee on a plate first (I know, why? but bear with me) you will get a quite different result. You will be able to make a hole in the middle of your coffee. The reason is that the surface tension of alcohol is much weaker than that of water. Consequently, if you try to mix a very thin layer of coffee with a small amount of alcohol, something slightly unexpected happens as this video shows:

The addition of a small amount of alcohol into the middle of a thin layer of water (or coffee) causes the water to recede. As the alcohol evaporates off, you are left with a dry ‘hole’ in the coffee. Why is this? It is effectively a liquid-tug-of-war on your plate. The higher surface tension in the coffee (or water) pulls against the weaker surface tension of the alcohol which eventually means that the water breaks away, leaving the hole. As the water molecules are continually moving, eventually they start to meet again over the dry spot and close the hole.

You can’t see this in your mug of course because the mixing occurs throughout the liquid while the plate ensures that this is only a surface effect.

You will need a strong alcohol, perhaps gin or vodka but please do try this experiment, let me know how you get on and enjoy the coffee, water (and alcohol) in UK Coffee week. And if you want to donate to Project Waterfall, you could either find a participating café here or donate online here.

 

Categories
Coffee cup science Home experiments Observations

Biscuit Crystals

biscuits gone wrong, crystals in the oven
Expanding biscuits are a 2D example of a close packed crystal lattice.

Blaise Pascal once wrote of the benefits of contemplating the vast, “infinite sphere”, of Nature before considering the opposite infinity, that of the minute¹. And although the subject of today’s Daily Grind involves neither infinitesimally small nor infinitely large, a consideration of biscuits and coffee can, I think lead to what Pascal described as “wonder” at the science of the very small and the fairly large.

The problem was that my biscuits went wrong. Fiddling about with the recipe had resulted in the biscuit dough expanding along the tray as the biscuits cooked. Each dough ball collapsed into a squashed mass of biscuit, each expanding until it was stopped by the tray-wall or the other biscuits in the tray. When the biscuits came out of the oven they were no longer biscuits in the plural but one big biscuit stretched across the tray. However looking at them more closely, it was clear that each biscuit had retained some of its identity and the super-biscuit was not really just one big biscuit but instead a 2D crystal of biscuits. The biscuits had formed a hexagonal lattice. For roughly circular elements (such as biscuits), this is the most efficient way to fill a space, as you may notice if you try to efficiently cut pie-circles out of pastry.

salt crystals
Salt crystals. Note the shape and the edges seem cuboid.

Of course, what we see in 2D has analogues in 3D (how do oranges stack in a box?) and what happens on the length scale of biscuits and oranges happens on smaller length scales too from coffee beans to atoms. Each atom stacking up like oranges in a box (or indeed coffee beans), to form regular, repeating structures known as crystal structures. To be described as a crystal, there has to be an atomic arrangement that repeats in a regular pattern. For oranges in a box, this could be what is known as “body centred cubic”, where the repeating unit is made up of 8 oranges that occupy the corners of a cube with one in the centre. Other repeating units could be hexagonal or tetragonal. It turns out that, in 3D, there are 14 possible such repeating units. Each of the crystals that you find in nature, from salt to sugar to chocolate and diamond can be described by one of these 14 basic crystal types. The type of crystal then determines the shape of the macroscopic object. Salt flakes that we sprinkle on our lunch for example are often cubic because of the underlying cubic structure on the atomic scale. Snowflakes have 6-fold symmetry because of the underlying hexagonal structure of ice.

It is possible to grow your own salt and sugar crystals. My initial experiments have not yet worked out well, but, if and when they do, expect a video (sped up of course!). In the meantime, perhaps we could take Pascal’s advice and wonder at the very (though not infinitesimally) small and biscuits. And if you’re wondering about where coffee comes into this? How better to contemplate your biscuit crystals than with a steaming mug of freshly brewed coffee?

¹Blaise Pascal, Pensées, XV 199

Categories
Coffee cup science General Home experiments Observations Science history Tea

Is sixty the old forty?

Lundenwic coffee
What is the ideal temperature at which to serve coffee?

What is the optimum temperature at which to enjoy a cup of coffee?

A brief check online for the “ideal” serving temperature for coffee suggested a temperature of around 49-60ºC (120-140ºF, 313-333K) for flavour or 70-80ºC (158-176ºF, 343.1-353.1K) for a hot drink. In my own experiments (purely to write this article you understand), I found that I most enjoyed a lovely coffee from The Roasting House (prepared by V60) at around 52ºC. My old chemistry teacher must have been one who enjoyed the flavour of his coffee too. His advice for A-level practicals was that if we wanted to know what 60ºC ‘felt’ like, we should consider that it feels the same on the back of our hand as the underside of our cup of coffee. So, for argument’s sake, let’s say that we serve our coffee at the upper end of the flavour appreciation scale: 60ºC.

But, have you ever stopped to consider what 60ºC means or even, how we arrived at this particular temperature scale? Why do we measure temperature in the way that we do? While there are interesting stories behind the Fahrenheit scale, today’s post concerns the Celsius, or Centigrade, scale. Indeed, we use “degree Celsius” and “degree Centigrade” almost interchangeably to mean that temperature scale that has 0ºC as the melting point, and 100ºC as the boiling point, of water. It is one of those things that has become so habitual that setting 0ºC at the freezing end and 100ºC at the boiling end seems obvious, intuitive, natural.

thermometer in a nun mug
Careful how you drink your coffee if you repeat this experiment!

And yet the temperature scale that Anders Celsius (1701-1744) invented back in 1741 did not, initially, work this way at all¹. Celsius’s scale did indeed count from 0ºC to 100ºC and was defined using the same fixed points we use now. But rather than counting up from the melting point, Celsius’s scale counted up from 0ºC at the boiling point to 100ºC at the freezing point. Rather than degrees of warmth, Celsius’s scale counted degrees of cold. So, in the original Celsius scale, the serving temperature of coffee should be 40ºC: Sixty is indeed the old forty*.

Which immediately begs a question. Why is it that we count temperature up (the numbers get higher as it gets hotter)? A first answer could be that we view that temperature is a form of measurement of ‘heat’ and that heat is an energy. Consequently, something cold has less energy than something hot, “cold” is the absence of “heat” and therefore what we should measure is “heat”. This means that our thermometers need to indicate higher numbers as the temperature gets hotter, and so we are now counting the correct way. While this is good as far as it goes and certainly is our current understanding of ‘heat’, ‘cold’ and temperature, how is it that we have come to think of heat as energy and cold as the absence of heat? It was certainly not clear to scientists in the Renaissance period. Francis Bacon (1561-1626) considered that cold was a form of “contractive motion” while Pierre Gassendi (1592-1655) thought that although ‘caloric’ atoms were needed to explain heat, ‘frigoric’ atoms were also needed to explain cold.

effect of motivation on experience of pleasure while drinking coffee
How heat, rather than visible light, is reflected provides clues as to why we measure temperature ‘up’.

One experiment that helped to show that heat was an energy (and so lent support to the idea of measuring temperature ‘up’) was that of the reflection of heat by mirrors. In the experiment, two concave mirrors are placed facing each other, some distance apart. Each mirror has a focal length of, say, 15 cm. A hot object is placed at the focal length of the first mirror. At the focal point of the second mirror, is placed a thermometer. As soon as both objects are in place, the temperature indicated by the thermometer increases. If the mirror were covered or the thermometer moved away from the focal point, the temperature indicated decreases again to that of the room. It is an experiment which can easily be demonstrated in a lecture hall and which fitted with a view point that cold is the absence of heat.

However, around the same time as this initial demonstration, Marc-Auguste Pictet did another experiment, the (apparent) reflection of cold². The experiment was as before but in Pictet’s second experiment, a flask containing ice replaced the hot object. On repeating the experiment the temperature indicated by the thermometer decreased. Covering the mirror or moving the thermometer from the focal point of the mirror resulted in the indicated temperature increasing again. Just as ‘heat’ was reflected in the mirrors, so too (seemingly) was ‘cold’.

So, the question is, how do you know what you believe you know about heat? Are there experiments that you can design that could help to disprove a theory of ‘frigoric’? And how do you explain the experiments of Pictet? Reader, it’s over to you.

 

*Within ten years of Celsius’s death (of tuberculosis in 1744), his colleagues Martin Strömer and Daniel Ekström had inverted Celsius’s original temperature scale to the form we know today. A similar scale designed by Jean Pierre Christin was also in use by 1743³.

¹”Evolution of the Thermometer 1592-1743″, Henry Carrington Bolton, The Chemical Publishing Company, 1900

²”Inventing Temperature”, Hasok Chang, Oxford University Press, 2008

³”The science of measurement, a historical survey”, Herbert Arthur Klein, Dover Publications Inc. 1988

 

Categories
Coffee cup science General Home experiments Observations Tea

Making a splash

You spilled your coffee, a terrible accident or an opportunity to start noticing?

Why do some droplets splash  while others stay, well, drop like? It turns out that there is some surprising physics at play here. When a drop of water, or coffee, falls from a height and onto a flat surface (such as glass), we are accustomed to seeing the droplet fracture into a type of crown of smaller droplets that form a mess over the surface. Visually spectacular, these splashing droplets have even been made into an art form (here).

Fast frame-rate photography reveals how each micro-droplet breaks away from the splashing drop:

Video taken from Vimeo – “Drop impact on a solid surface”, a review by Josserand and Thoroddsen.

 

So it perhaps surprising to discover that there are many things about this process that we do not yet understand. Firstly, if you reduce the gas pressure that surrounds the drop as it falls, it does not make a splash. In the extreme, this means that if you were to spill your coffee in a vacuum, you would not see the crown-like splashing behaviour that we have come to expect of falling liquids. Rather than splash, a droplet falling in low pressure spreads out on impact as a flattening droplet. This counterintuitive result was first described in a 2005 study (here) that compared the effect on splashing of droplets with different viscosities (methanol, ethanol, 2-propanol) falling through different gasses.

cortado, Brunswick House, everyday physics, coffee cup science
Don’t spill it!
But would a latte splash more or less than a long black?

The authors of the study ruled out the effect of air entrapment surrounding the droplet as it falls as high speed photography had not indicated any air bubbles in the droplet just before impact. Instead they considered that whether a drop splashes on impact – or not – depended on the balance between the surface tension of the falling liquid and the stress on the drop created by the restraining pressure of the surrounding gas. Calculating these stresses led to a second surprising result. Whether a drop splashes on impact or not depends on its viscosity (as well as the gas pressure and the speed of impact). But the surprising bit is that the more viscous the liquid, the greater the splash.

From a common-sense perspective (that may or may not have any bearing on the reality of the situation), an extremely viscous liquid like honey should not splash as much as a less viscous liquid like coffee. This suggests that there is an upper-limit in viscosity to the relation predicted in the 2005 study. After all, although the authors did change the viscosity of the liquids, the range of viscosity they studied was not as great as the difference between coffee and honey. This sounds like a perfect experiment for some kitchen-top science and so if any reader can share the results of their experiments on the relative splashes formed by coffee and honey, I would love to hear of them.

 

Categories
General Home experiments Observations Science history slow Tea

Reflections on physics and coffee

BeanThinking started as a way of slowing down and appreciating connections, often between a coffee and the physics of the wider world but also in terms of what can be noticed in any café. Perhaps, for this first post of 2017, it’s worth spending five minutes looking at your coffee while you drink it to see what you notice. Here are a few coffee connections that occurred to me recently:

reflections, surface tension
Reflections on a coffee.

Parallel lines and surface reflection: The parallel lines on the ceiling of a café were reflected in a long black. Surface tension effects on the coffee meant that the reflections were curved and not at all parallel. A piece of dust on the surface of the coffee was revealed in the reflection by the curved reflections of the ceiling. Astronomers can use similar effects (where images of a star appear in a different location to that expected) to infer the presence of dark objects between distant stars and their telescope. This gravitational lensing can be used to detect quasars or clusters of galaxies.

 

 

 

layering of coffee long black
Layers of coffee

Layering of crema as the coffee is consumed: The coffee stain effect and this layering of the crema suggests a connection between a coffee cup and geology. It used to be my habit to take a mug of tea with me when I taught small groups of undergraduates. In the course of one of these tutorials, a student (who had been observing similar layering in my tea mug) said, “You drink your tea faster when it is cooler than when it is hot”. Full marks for observation, but not sure what it said about his attention during my tutorials! Similar observations though can help geologists estimate the age of different fossils.

 

interference patterns on coffee
Bubbles in coffee

Bubble reflections: An old one but the interference patterns caused by bubbles on the surface of the coffee are full of fascinating physics. The fact that the bubbles are at the side of the cup and seem to be grouped into clusters of bubbles may also be connected with surface tension effects (although there is a piece of weather lore that connects the position of the bubbles to the weather. If anyone ever does any experiments to investigate this particular lore, I’d love to hear about them).

 

 

Coffee, Van Gogh
Art in a coffee cup

Van Gogh’s Starry Night: The effects of vortices and turbulence caused the crema of a black coffee to swirl into patterns reminiscent of this famous painting by Van Gogh. As a result of posting this image on Twitter, @imthursty sent me a link to this preprint of a paper submitted to the arxiv: the connections between Van Gogh’s work and turbulence. A great piece of coffee combining with art and science.

 

So many connections can be made between tea, coffee and science and the wider world, I’d love to see the connections that other people make. So, if you see some interesting physics, science or connections in your coffee cup, why not email me, or contact me via FB or Twitter.

 

Categories
General Home experiments Observations Tea

An easy way to get a halo

The other day I was talking to a primary school child about condensation, what it was, where to see it etc. So I asked,

“Do you drink coffee?”

“No.”

“Do you drink tea?”

“No”

(I started to worry about the future generations). Nonetheless, I pulled out my cup of steaming coffee and pointed to the water droplets around the edge of the mug (which are very common if you haven’t warmed your cup before pouring your hot coffee into it) and noticed a sudden expression of recognition cross the child’s face.

“Like when you breathe on a mirror?”

Kettle drum at Amoret
Condensation on around the top of the jug on this V60

Yes, exactly so (and probably a much better example for a kid anyway, the problem of being an adult with a one track mind!). As the child had realised, the science in your coffee cup is connected to phenomena that occur elsewhere in the world. In the case of condensation, it occurs when the temperature of the surface onto which condensation happens is below what is called the “dew point”. Determined by the relative humidity in the environment, the dew point is the temperature below which water vapour in the air will condense into liquid water.

Of course the dew point gets its name from the dew that can form after a chilly night. Which brings us to another property of those water droplets that form around the rim of your coffee mug. Although it is not easy to see on the mug, each droplet is acting as a lens, focussing the light that falls onto it. As the surface of the mug is fairly flat, rather than form spherical droplets, the drops that form on the side of the mug are squashed hemispheres. This is not the case when dew forms on grass. Tiny hairs on the surface of the grass protrude from the leaf meaning that the water droplets form into spheres (which is, incidentally very similar to the reason that a duck is so waterproof). When the sun comes up, each sphere of water focusses the sunlight onto the grass behind it which reflects it back, right in the direction it came from.

heiligenschein, self portrait
Self-portrait with weak heiligenschein. Share your photos with me on FB or Twitter.

This means that if you stand with your back to the sun and look at your shadow on dew covered grass, you will very probably see a region of bright light surrounding your head, your heiligenschein. German for “Holy light”, heiligenschein is the effect of all of those spherical dew lenses reflecting the sunlight back towards you. You can only see the effect around your ‘anti-solar’ point (a position defined as being 180º from the Sun from the viewpoint of the observer, see here for what this means visually). This means that while you will see heilgenschein around your head, or around the shadow of the camera that you use to photograph it, you will never see the halo around someone else’s head even while they themselves can clearly see it.

I’m sure there’s some sort of metaphor there, perhaps one to contemplate next time you’re drinking a hot, steaming coffee.