Einstein

Reading tea leaves with Einstein and my great-grandmother

tea pot science

It’s not just tea, Einstein is famous for some other physics too

Ask anyone what Albert Einstein is famous for and you’ll probably (hopefully) hear that he came up with the theory of relativity (special and general). Perhaps you may also be told that he came up with a little theory explaining the photoelectric effect for which he won the Nobel prize in 1921. Maybe, if you have read this website before, you will know that he contributed to our understanding of Brownian motion, which is a phenomenon that is frequently found in a coffee cup. But it turns out that Einstein wrote another paper, far more important than any of these others, which was about tea. Or at least, I suspect my great-grandmother would have found it more important than any of these others as it coincided with a special hobby of hers, reading tea leaves.

It seems that my great-grandmother used to enjoy reading tea-leaves. Whether it was something she had learned as a child or merely used as an interesting trick to perform at family functions, stories of her examining the patterns formed by swirling tea leaves in a cup have come down to us in younger generations. Einstein too had noticed the patterns formed by the tea leaves in the cup and had observed a problem. The problem is this: If you drink a cup of (inadequately filtered) loose leaf tea and stir it, the tea leaves collect in a circle in the middle of the base of the cup. At first this may appear counterintuitive. When we stir things, don’t things fly outwards towards the edge of the cup rather than inwards to the centre of the circle? Why is it that the leaves collect in the middle?

Thames, NASA image

How do rivers erode? What causes a river to meander? The meandering Thames, photographed by NASA, Image courtesy NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team

For Einstein, this tea leaf problem was connected to another phenomenon, the erosion of rivers. But it turns out that the problem is also linked to issues found in beer brewing and blood tests, and it seems, in how to poach an egg. To see the solution and therefore the connections, we need to think a bit more about how water flows. One of the brilliant lines in Einstein’s paper starts “I begin with a little experiment which anybody can easily repeat.” This experiment is to obtain a flat bottomed cup of tea with some tea leaves at the bottom of it. Now stir the tea and watch how the leaves settle, Einstein continues “the leaves will soon collect in the centre of the bottom of the cup“.

The explanation is connected with the fact that at the walls of the cup, the liquid (tea) is being slowed down by the friction between the walls and the tea. Secondly, as the tea is stirred, the surface of the tea becomes concave with a distinct dip in the centre of the swirling tea. The result of all this is that a secondary rotation is set-up where the tea flows down the sides of the cup, along the bottom and then back up in the centre and once more to the sides (have a look at the diagram, some things are easier with pictures). As they are carried along with the water, the tea leaves move towards the centre of the cup but then, being too heavy to rise again with the tea up to the centre of the cup, they stay on the bottom forming a circular patch of tea leaves.

adaptation from Einsteins paper

The secondary circular flow set up in a tea cup when it is stirred leads to a circular deposition of tea leaves (figure adapted from Einstein’s 1926 paper).

When you think about how water flows as it goes around a bend in a river, you could perhaps imagine a similar secondary flow being set up but this time from the inner edge of the bend to the outer edge and back down (so, like half a tea cup). As the water is going to be moving fastest at the outer edge, just before it plunges down towards the bottom of the river in this secondary cycle, any river erosion is going to be most noticeable on the outer edge of the bend.

It seems the effect is also used in beer brewing in order to introduce a greater concentration of hops into the brew, and to separate different types of blood cell in blood tests. So this just leaves the poached eggs. How do you poach eggs? If you have a proper poacher perhaps you get neat eggs each time but for those of us without them, poached eggs tend to be a messy cooking project. But worry no longer! Just as tea leaves collect in the centre of a tea cup, so will the egg if you ensure that your pan of boiling water is swirling around the central axis before you put your egg in. Cooking helped by physics, perfect.

For reasons of full disclosure, I should emphasise that I have only recently found this suggestion for cooking eggs ‘theoretically’ and not yet tested it. So, if you were looking for reasons to drink loose tea, or wanted to poach an egg without a poacher, perhaps you could try Einstein’s little experiment and let me know how you got on, I’d love to hear your tea leaf readings and see your poached egg results.

 

 

 

Coffee innovations at MacIntyre, Angel

MacIntyre Coffee AngelOne motivation behind Bean Thinking is to explore those connections that can be found when we stop to really look around us. Whether your interest is in history, philosophy or science, something in a café will prompt a train of reflections that can lead to interesting and surprising thought journeys. This is surely true for anybody in any café, if we just take the time to slow down. But, I admit a prejudice: while I had heard great things about the coffee in MacIntyre, when I had glanced in from the bus window, I saw the scaffolding seating arrangements and wooden surfaces that can be a type of design found in many new cafés. So I worried. Was it going to be hard to ‘see the connections’ in MacIntyre? Would I end up with a great coffee but a challenge to my assumptions about the ubiquity of connectivity?

Fortunately, I needn’t have worried. The two lovely coffees that I have enjoyed at MacIntyre gave me plenty of time to really savour both the coffee and my surroundings and I was wrong in my assumptions from the bus window, connections really are everywhere. The café itself was a delightful find. Watching other customers while drinking my long black, it seemed that everyone was greeted by a cheery “hello”. Many people were clearly regulars, which is perhaps unsurprising for a friendly café with good coffee in a busy area. The scaffolding and wooden seating also works in the space at MacIntyre, giving a strangely relaxing feel to the café. The café itself is rather narrow, with the seating on one side and pastries/ordering queue on the other. Tap water was delivered with the coffee, without my needing to have asked for it.

Plant, light, scaffolding at McIntyre's Angel

Good scaffolding also has good connections.
Plant and light at MacIntyre.

MacIntyre may also be a great spot if you are into people watching. Amidst the general busy-ness, I could eavesdrop on conversations about the latest coffee news and the rise of artificial intelligence (these were two separate conversations!). Perhaps the conversations were particularly noticeable owing to the acoustics of the wooden walls and the narrow, small space of the café. At various points around the café, plants hung from the scaffolding. Some of the plants were spot-lit, which caused me to wonder whether the light that the plants were receiving was optimal for photosynthesis. The menu was projected onto the rear wall of the café, which was also decorated with hexagons, an immediate connection to graphene.

But then, in my coffee cup, the significant crema on the coffee showed evidence of amazing thermal convective motion together with turbulence. The coffee itself was very sweet with nutty overtones but the movements of the crema reminded me of cloud formation in thunderstorms. Although thunderstorms didn’t make it to the thought train of MacIntyre, another form of surface motion suggested a connection to another, unusual, feature of this café. You see, MacIntyre is a cashless business, no cash is accepted even if you’re only buying a long black. Most customers on my visit paid with their contactless cards.

The idea of a cashless society is one that has obvious advantages for both the business and the government/economy (whether it has such obvious advantages for the consumer I will leave as a point to be debated). While some countries are attempting to move to a more cashless economy, for a business to be entirely cashless is somewhat innovative. Even though MacIntyre is not the only café to go cashless (Browns of Brockley is similarly cash free), it has to be one of the first cafés to do so.

Coffee at MacIntyre Angel

Coffee and water on wood at MacIntyre Coffee. Could you increase the returns on your investments by understanding the movements on the surface of a cup of coffee?

What is the connection between this and the surface movement on my coffee? Well, it is not just at MacIntyre that a café has supported an innovation that has (or may) change our economy. Just over three hundred years ago, Jonathan’s Coffee House in Exchange Alley was a place of similar innovation, though there it was a customer rather than the coffee house itself that gave the change.

It was at Jonathan’s in 1698 that John Castaing published a paper twice a week detailing the latest stock prices titled “The course of the exchange and other things”. Recognised now as the origin of the London Stock Exchange, how stocks are priced and how their prices vary with time are subject to intense mathematical modelling. Although now, these models can be extraordinarily complex, the base of many of them share a mathematical model with the movements on the surface of your coffee cup, Brownian Motion.

Jonathan's coffee house plaque

The site of Jonathan’s in Exchange Alley. Seen while on a Coffee House tour last year.

Brownian motion is the phenomenon in which small particles of dust, or coffee grains on the surface of your coffee move in a random way as a result of collisions between the particles and the molecules in the liquid. First described in detail by a botanist, Robert Brown in 1827, the experimental evidence in favour of the molecular-collision explanation of Brownian motion came in 1910 with Jean Perrin’s careful experiments (that have featured in The Daily Grind previously). The maths behind the explanation relies on the idea of the ‘random walk‘ in which each dust particle is ‘kicked’ in a random direction by the molecules in the coffee, the consequent motion being frequently described with reference to a drunkard attempting to get home after leaving the pub. However, as this concept of the ‘random walk’ was being developed for molecules in a liquid, it was simultaneously being developed to model the movements of stock prices by the mathematician Louis Bachelier. Bachelier’s model of stock prices turned out to be the same as the model of Brownian motion, but both developed independently.

As yet, it is unclear (to me at least) whether there is a link between cashless payments and some of the maths in your coffee cup but, MacIntyre would be a great place to contemplate this as you sip your brew. Never succumb to prejudices, on which note please do let me know what you think of cashless payments, a great convenience or an invasion of privacy?

MacIntyre can be found at 428 St John St, EC1V 4NJ.

Tea Gazing

Milky Way, stars, astrophotography

The Milky Way as viewed from Nebraska. Image © Howard Edin (http://www.howardedin.com)

A recent opinion piece about last week’s announcement of the detection of gravitational waves at LIGO drew my attention to a quote from Einstein:

The most beautiful experience we can have is the mysterious. It is the fundamental emotion that stands at the cradle of true art and true science. Whoever does not know it and can no longer wonder, no longer marvel, is as good as dead, and his eyes are dimmed.

Einstein was not the only scientist to have expressed such sentiments. Many scientists have considered a sense of wonder to be integral to their practice of science. For many this has involved gazing at the heavens on a clear night and contemplating the vastness, and the beauty, of the universe. Contemplating the twinkling stars suggests the universe outside our Solar System. Watching as the stars twinkle gives us clues as to our own planet’s atmosphere. Of course, it is not just scientists who have expressed such thoughts. Immanuel Kant wrote:

“Two things fill the mind with ever-increasing wonder and awe, the more often and the more intensely the mind of thought is drawn to them: the starry heavens above me and the moral law within me.“*

light patterns on the bottom of a tea cup

Dancing threads of light at the bottom of the tea cup.

The other evening I prepared a lovely, delicate, loose leaf jasmine tea in a teapot. I then, perhaps carelessly, perhaps fortuitously, poured the hot tea into a cold tea cup. Immediately threads of light danced across the bottom of the cup. The kitchen lights above the tea cup were refracted through hot and not-quite-so-hot regions of the tea before being reflected from the bottom of the cup. The refractive index of water changes as a function of the water’s temperature and so the light gets bent by varying amounts depending on the temperature of the tea that it travels through. Effectively the hotter and cooler regions of the tea act as a collection of many different lenses to the light travelling through the tea. These lenses produce the dancing threads of light at the bottom of the cup. The contact between the hot tea and the cold cup amplified the convection currents in the tea cup and so made these threads of light particularly visible, and particularly active, that evening. It is a very similar effect that causes the twinkling of the stars. Rather than hot tea, the light from the distant stars is refracted by the turbulent atmosphere, travelling through moving pockets of relatively warm air and relative cool air. The star light dances just a little, with the turbulence of the atmosphere, this way and that on its way to our eyes.

Marcus Aurelius wrote:

Dwell on the beauty of life. Watch the stars, and see yourself running with them.Ҡ

Marcus Aurelius of course didn’t have tea. Watch the dancing lights in the tea cup and see yourself sitting with it, resting a while and then watching while dwelling on the beauty in your cup.

*Immanuel Kant, Critique of Practical Reason

†Marcus Aurelius, Meditations

Waiting for a green light at Alchemy, St Pauls

8 Ludgate Broadway, St Pauls

Alchemy Coffee

Alchemy, “a seemingly magical process of transformation, creation or combination”, is certainly a cafe that lives up to the dictionary definition of its name. The branch, on Ludgate Broadway near St Pauls, is the outlet that ‘showcases’ the coffee of Alchemy Roasters. On walking into this cafe, I was presented with a menu of two types of beans for espresso based drinks or two different beans for filter/aeropress. Both sets of coffees came with tasting notes. After a brief chat with the friendly barista I went for the San Sebastian with aeropress. Notes about the origins of the coffee are dotted around this superbly sited cafe (its location is ideal for people watching). The coffee is directly traded (where possible) and, if lattes or cappuccinos are your thing, there are also details about the farm that produces the milk.

Although there were cakes on the counter, I had just had lunch and so had to pass on what looked to be a good selection of edibles. The coffee though was certainly very good and definitely an experience to be savoured. As, perhaps I should have expected, when the coffee arrived it came in a beaker reminiscent of chemistry laboratories. From my chair in the corner, I could watch the preparation of the coffee behind the counter, the people coming into the shop to order their coffee and the crowds passing by outside.

E=mc2 Einstein relativity in a cafe

Scales at Alchemy. Weights on one side, chocolate on the other, it can only mean one thing: energy-mass equivalence

Close to where I was sitting was an old style set of measuring scales. This see-saw balance had weights on one side and chocolate on the other. Perhaps this connection seems tenuous, but for me weights on one side of the scales and an energy bar (chocolate) on the other side could only mean one thing:

E=mc²

The equation relating energy and mass for a particle at rest derived, and made famous by Einstein. The equation comes from Einstein’s theory of special relativity which states that nothing can be accelerated to faster than the speed of light (in a vacuum). First set down in 1905, the theory has some very odd predictions, among which the best known is probably the twin paradox (details here). The idea is that a moving clock will be observed to run slowly by a stationary observer, a prediction that has been confirmed several times by experiments using atomic clocks (here).

San Sebastian via Aeropress

Coffee is served at Alchemy

Moreover, the equation states that mass and energy are equivalent and that a small amount of mass can produce an awful lot of energy, (details here). A detail which will bring this story of a cafe-physics review nicely back to the Alchemy cafe, to London and to the importance of slowing down. The connection is through a set of traffic lights in Bloomsbury. Back in 1933, Leo Szilard was waiting to cross the road at the traffic lights at the intersection of Russell Square with Southampton Row. Szilard had recently escaped from Nazi Germany and was spending his time as a refugee in London pondering different aspects of physics†. That September day, Szilard was thinking about a newspaper article featuring Ernest Rutherford that he had read earlier. In 1901  Ernest Rutherford, together with Frederick Soddy, had discovered that radioactive thorium decayed into radium. The changing of one element into another could be considered a type of modern day alchemy. However Rutherford did not believe that there could ever be a way of harnessing this nuclear energy. In the article read by Szilard in The Times, Rutherford had dismissed any such ideas as “moonshine”. Szilard was forced to pause his walk as he waited for the traffic lights to change. Those few moments of pause must have helped clear Szilard’s mind because as the light went green and Szilard was able to cross the road, a thought hit him: If every neutron hitting an element released two neutrons (as one element was transmuted into another), a chain reaction could be started. As part of the mass of the decaying atom was released as energy, it would mean that, feasibly, we could harness vast amounts of energy; E=mc².

This idea, a consequence of spending five minutes waiting for a traffic light rather than checking Twitter (not yet invented in 1933), proved to underpin both the nuclear fission which we use in electricity generation and the nuclear fission that we’ve used to develop weaponry. It makes me wonder what alchemy we could conjure in our minds if we stopped to enjoy the transformations of the coffee beans at Alchemy.

 

Alchemy (cafe) is at 8 Ludgate Broadway, EC4V 6DU

† A book that some may find entertaining is:

“Hitler’s Scientists”, John Cornwell, Penguin Group publishers, 2003. The book contains this anecdote about Szilard: As Szilard was of Hungarian-Jewish descent, he fled Germany to Britain via Austria on a train a few days after the Reichstag fire of 1933. On the day he left, the train was empty. One day later, the same train was overcrowded and the people leaving Germany were stopped at the border and interrogated.  An event that prompted him, a few years later, to reflect “This just goes to show that if you want to succeed in this world you don’t have to be much cleverer than other people, you just have to be one day earlier than most people.” Something to reflect on in today’s refugee crisis perhaps.

Perpetual motion in a coffee cup

V60 from Leyas

Could your coffee be used to power a perpetual motion machine?

There can be no such thing as a perpetual motion machine right? Yet less than two hundred years ago it seemed possible that there could be. Not just that, the source of this perpetual motion machine was in your coffee cup. How would you explain Brownian motion?

Brownian motion is the random movement of small bits of dust or coffee/tea particles on the surface of your brew. To see it, you may have to use a microscope though you should take care not to confuse Brownian motion with motion caused by convection currents. There will be Brownian movement even a long time after the coffee has got cold. What causes this continuous movement? When he observed it for the first time in 1827, Robert Brown (1773-1858) had thought it was to do with a ‘life force’. He had been observing pollen suspended in water and noticed that the pollen kept moving under his microscope lens. In 1827, this was a very reasonable explanation, after all, weren’t several people looking for a motion, a force, that gave life?

Sphinx, Brownian motion

Brown used some dust from the Sphinx (shown here with the Great Pyramid) to show that ‘Brownian’ motion could occur in inorganic materials. Postcard image © Trustees of the British Museum

So, he checked if he saw the effect in pollen that was one hundred years old (he did) and then in truly inorganic matter, he looked at the dust from a fragment of the Sphinx. Again he saw the dust fragment move in the water. He had therefore shown that it was not associated with a life force but was something that happened for every small particle suspended in a liquid. What was driving it?

Without knowing what caused it, some people in the nineteenth century had already suggested a device to exploit it, using tiny levers to carry the energy from this continuous motion into devices. Others insisted on finding out what was causing the motion but it was here that the physics of the day hit a philosophical problem. It was proposed that molecules in the water could be hitting the dust on the surface and moving the dust in seemingly random directions. And yet there is a problem with this explanation. At that time there was no way of seeing or measuring molecules. How could physics postulate a theory – or suggest a reality – that could not be tested?

Nasa, Norway, coastline, fratal

How long is a section of coastline? Coastlines can be described as fractal like. Mathematics that grew out of studying random walks and Brownian motion. Image credit NASA Visible Earth/Jeff Schmaltz

An answer came one hundred years ago in a paper published by Albert Einstein (1879-1955) in 1905. In it he made some mathematical predictions that, for the first time, allowed the theory (that it was molecules causing Brownian motion) to be tested by experiment. Jean Perrin (1870-1942) of the Sorbonne, Paris, was the experimentalist who, by careful observation of droplets of water containing a pigment used by water colour artists, provided evidence for Einstein’s theory of Brownian motion. The experiment was so important that Perrin later wrote “.. the molecular kinetic theory of Brownian movement has been verified to such a point in all its consequences that, whatever prepossession may exist against Atomism, it becomes difficult to reject the theory.”

The consequences for our world have been profound. The mathematics that describes Brownian motion is that which we use as the basis to predict the movements of the stock exchange. Extensions of the mathematics have been used to develop new areas of mathematics such as fractals. Even art has grasped the theory of Brownian motion, the Anthony Gormley sculpture “Quantum Cloud” is based on mathematics describing Brownian motion. Everywhere you look there are phenomena described by the movements in your coffee cup. What we have yet to do is find that perpetual motion machine.