waves

Coffee, chaos and computing

Have you ever noticed drops of coffee skipping across the surface of your coffee as you have been preparing a V60? Or watched as globules of tea dance on the resonating surface of a take-away dragged across a table top? The dancing drops can be seen in this video of coffee being prepared in a V60:

These droplets are the result of some fascinating physics. Although we have encountered them on the Daily Grind before (here and here), the more physicists study them, the more surprises they throw up. While the droplets can be considered particles, they are guided around the coffee pot by the surface waves they create as they bounce. In a sense they are a macroscopic example of wave-particle coexistence. There is a significant temptation to explore whether they have relevance for the concept in quantum physics of wave-particle duality. But another aspect of this wave-particle coexistence has recently been shown to produce a different and unexpected connection. A connection between chaos and computing. And as you can create these droplets in coffee, perhaps we could say a connection between coffee, chaos and computing.

floating, bouncing drops

Drops of water can be stable on the water’s surface for much longer than 1 minute if you put the water on a loudspeaker, more info on how to create these at home here.

It is fairly simple to create these surface droplets in coffee at home. The secret to getting stable droplets on the surface is to create a vibration, a wave, on the surface of the coffee liquid. The droplets that then form on (or are introduced to) the surface ‘bounce’ on this wave. If you wanted to create surface droplets reliably at home, you would put your coffee on a loud speaker. I suspect that the reason that they appear in a V60 is that the first drops set up a standing wave on the surface of the coffee that acts to support later drops as they encounter the surface. If anyone has a different theory, please do let me know.

But how is it possible that these bouncing droplets connect chaos theory and computing? It is a consequence of the way that the globules of coffee on the surface interact with the waves that guide them around the coffee. Consider for one moment a particle bouncing around a confined space (the traditional example is of a ball on a billiards table). On an ordinary table, the billiard ball will behave quite predictably, start it off aimed roughly at the side of the table and it will bounce in an easily describable way. But if you make the ends curved or put circular objects in the middle of the table for the ball to bounce off, small differences in initial direction can result in large differences in the final path of the ball (for more details and an animation see here). The billiard ball behaves chaotically, and the initial path cannot be found from the final position, there is no way to re-trace the path of the ball, it is not “time-reversible”.

science in a V60

A still from the video above showing three drops of coffee on the surface.

The droplet bouncing on the liquid surface appears to move chaotically, just as the billiard ball on a circular table. However, unlike the billiard ball, the droplet is not a mere particle, but a particle linked to a self-generated surface wave. Each time the droplet bounces on the surface, it creates a small wave, like ripples on a pond. The path taken by the droplet is a complex interaction between this self-generated wave, the vibration keeping the droplet bouncing and the droplet itself. This means that if you are able to shift the phase of the bounce by 180º (meaning, that rather than bounce on an upward motion of the surface, the drop bounces on a downward motion or vice versa), the bouncing droplet not only reverses the direction it travels in, it retraces its path. Rather than behave as the chaotic billiard ball, the path taken by the seemingly chaotic globule of coffee can be exactly reversed.

Which is where the link with computing comes in. It is as if each “bounce” of the droplet “writes” information on the surface of the coffee in the form of a wave. The subsequent bounces “read” the information while the reversal of the direction of the bouncing droplet “erases” the stored information by creating a surface wave opposite to the initial one. The authors of the recent paper suggest that “in that sense [the walking droplet can] be termed as a wave Turing machine”, giving the final link to computing.

Whether or not this turns out to be useful for computing is, to me, almost irrelevant. What is interesting is that such a simple phenomenon, that anyone who makes pour-over coffee should have seen fairly often, is linked to such complex, and fundamental physics. If you would like to read more, there is a great summary article here while the actual paper is here.

 

Coffee & Contrails (I)

contrail, sunset

A set of criss-crossing contrails taken in the evening.

If you gaze up at the sky on a clear day, you will often see a few contrails tracing their way across the blue. Formed as a result of water in the atmosphere condensing onto exhaust particles from aeroplanes, contrails are a regular feature of the skies in our modern life. There are at least two ways that I can think of, in which the physics of the contrail is connected to the physics of the coffee cup, so, there will be two Daily Grind articles about them. This first one, about the physics of how we see them, and a second post (scheduled for 10th June) about interesting effects that we can see in them.

Perhaps now would be a good point to go and make a cup of coffee before coming back to this post. Make sure that you notice how the steam clouds form above the kettle spout as the water boils. Do you see the steam at the spout itself, or just a few centimetres above it? With the cup next to you, notice the steam rising above it. Does the steam seem more obvious on some days than others? For example, the coffee always seems to me to steam more on cold damp days in winter than on warm-ish days in late spring. Both of these observations (about where and when we see the steam clouds) are mirrored in the contrails, it’s time to take a closer look at the coffee.

V60 from Leyas

The clouds above a coffee cup are a rough indicator of the relative humidity.

The difference in the day to day visibility of the steam above the coffee cup is an indicator of the relative humidity of the atmosphere. If we prepare our cup of coffee on a day when the relative humidity is already high, adding that extra bit of water vapour from the cup leads to clouds of steam above the mug, as the water condenses into droplets of liquid water and forms clouds. If our coffee was instead prepared on a day with low relative humidity, the water vapour above the coffee cup is less likely to condense into clouds. Contrails are formed high in the atmosphere when the relative humidity is quite high. Exhaust particles from the engines of the plane offer a surface onto which the water in the surrounding (humid) atmosphere can condense to form clouds. We know that it is mostly the atmospheric moisture that is forming the contrails (rather than water from the exhaust itself) because of research done by NASA. In research flights, the amount of water vapour leaving the aeroplane engine was 1.7 grammes per metre of travel while the mass of water in the contrail was estimated to be between 20.7 and 41.2 kilograms per metre. This means that contrails can give a clue as to the weather: on dry days, contrails will not form because the water in the atmosphere is likely to remain a gas and therefore invisible to us, it is only when the air is already quite humid that contrails are likely to form and persist.

glass of milk, sky, Mie scattering

A glass of (diluted) milk can provide clues as to the colours of the clouds in the sky as well as the sky itself

Then there is the question of why we see them at all. Contrails appear as white clouds trailing behind the plane. We see them as white because of an optical effect caused by the size of the condensed droplets of water (actually ice) in the contrail. Objects appear as having different colours either as a result of light absorption by chemicals in the object (leaves are green because of chlorophyll) or as a result of light scattering from the object. A water droplet is colourless and so the colour we see coming from the droplet must be purely a consequence of light scattering rather than a light absorption effect. Clouds appear white because the water droplets within the cloud are as large, or larger than, the wavelength of visible light (0.7 μm). Droplets this size will scatter all wavelengths of visible light and so appear white. If the droplets were much smaller than the wavelength of light they would scatter different wavelengths by different amounts. It is because the atmosphere is full of such tiny particles (and molecules) that blue light is scattered more than red light in the atmosphere and so the sky appears blue to us from our vantage point on the Earth’s surface. Milk is composed of large fat droplets (which will scatter a white light) and smaller molecules which will preferentially scatter blue light, just as the sky. This is why you can mimic the colours of the sky in a glass of milk. It is because the water droplets have formed a few cm above the kettle spout that you can see them scattering the light. For exactly the same reason, the contrails in the sky appear as white clouds.

contrails

A hot air balloon in a sky full of contrails

Contrails can persist in the sky for anything from a few minutes to a few days. Just like clouds, contrails affect the way that light (and heat) is reflected from the Sun or back towards the Earth. However, unlike normal clouds they are entirely man-made, another factor that could have an unknown effect on our climate. A few years ago, a volcano eruption in Iceland caused the closure of UK airspace (as well as the airspace of much of Europe). I remember being in the queue to buy a cup of coffee in the physics department and hearing the excited conversation of two atmospheric physicists behind me. For the first time they were able to study some particular atmospheric effects without the influence of any contrails. In effect they could start to understand the influence of contrails by this unique opportunity of taking measurements during their absence. What was a major pain in the neck for so many travellers in 2010 meant a lot of extra (but presumably very interesting) work for them.

Coffee & Contrails (II) is about the structures you can sometimes see within the contrail. If you can think of any other connections between coffee and contrails (or coffee and clouds) why not let us know in the comments section below.