Allergy friendly Coffee review General Observations

Getting to the point at Sharps

coffee and Caffeine at Sharps
Coffee at Sharps Coffee Bar.

There will be plenty to notice at any café that shares space with a barber’s shop. And so it was the case at Sharps Coffee Bar on Windmill Street. The café is at the front of the barber’s shop which is separated from the tables by a glass wall: people watching in a type of human goldfish bowl. The counter was on the left of the shop as we walked in and it was great to see that in addition to the usual espresso based drinks there was an aeropress coffee available (as well as batch brew). Given the chemistry of pre-brewed coffee, I tend to pass on batch brews though I am aware that there are many people who enjoy speciality coffee who will disagree with me. However, given that the barista on the day was “still perfecting” his aeropress recipe, I enjoyed instead a long black prepared with The Barn roasted beans.

The sign in the window suggested that “maintenance matters” which is something that I am sure that we can all agree on, whether it is on haircuts, coffee equipment or even equipment in a science lab. A stitch in time saves nine so they say. On the board listing the prices, it was good to see that Sharps coffee bar mentioned the use of almond milk. Although personally I generally drink black coffees, cross contamination can be an issue for allergy sufferers and so it is always helpful to be alert to the use of nut-based milks when they are used (you can read more here). Edibles were supplied by Kaffeine. Behind the bar there were a couple of trough-like sinks while the contrast in the wood and the tiling on either side of the bar provided another avenue of thought.

cacti in a row
Sign, window and cacti at Sharps Coffee Bar

In the window, a row of cacti caught my attention. Cacti seem known for two things. One is that they are (generally) prickly and the other that they are extremely water efficient.  But these two facts can also apparently be linked. Some cacti use their spikes or hairs to change the local atmosphere around them so that air is trapped in the hair or that air flow is reduced. Both of these measures would help to prevent water loss from the main body of the plant. It is an example of the structure of something affecting the environment around it. Similar effects can be seen on the hairs on a spiders legs which trap air allowing the spiders to survive if they are submerged as well as to waterproof the legs in more general times. Some plants similarly use hairs (and therefore the air trapped in them) to waterproof their leaves. The benefit of this for the plant is that waterproof leaves mean that drops of water roll off of them causing the leaves to be self-cleaning. This is an effect that people are trying to mimic in order to make self-cleaning surfaces for human use.

View of St Paul's Cathedral London
There is a whispering gallery in the dome of St Paul’s Cathedral. An interplay between sound waves and the shape/size of the dome.

Structures can also be used to trap sound waves either deliberately with meta-materials or, almost accidentally such as the whispering galleries of cathedral domes. Moreover the hairs themselves can act as part of a sound detection system. Human ears for example have tiny hairs in the cochlea. As a sound comes in and these hairs vibrate, the movement of these hairs gets converted to a nerve impulse that we can eventually ‘hear’. Perhaps this could take us into a consideration of what hearing is, what sound is and, in a Berkeley-type way whether we actually experience anything outside of ourselves at all. However, more directly it takes us back to the barber’s shop and how evolution has resulted in a wide variety of structural adaptations that allow different life forms to live optimally in their environment.

And with that, it would probably be time to sit back and enjoy another coffee.

Sharps coffee bar is at 9 Windmill Street, W1T 2JF

General Observations slow Sustainability/environmental

A drop in the Chemex?

Chemex, 30g, coffee
How do you prepare your coffee?

How do you prepare your coffee? Generally I’ll either use the Chemex or a French press. Often it will be the French press purely because it is, sadly, quicker. However, on those mornings that I do slow down to prepare a Chemex, I generally feel better for it. Not only does the coffee taste better, but those 5 minutes of preparing the coffee pay off as time for the mind to wander rather than just time spent waiting for the caffeine. When the Chemex is nearly ready, the fresh brew drips slowly from the filter onto the liquid below. Each drop produces a ripple pattern. At the start of the UN conference on climate change in Paris (COP21), we may well hear talk of some of our efforts being mere “drops in the ocean”. So it seems a good time to reflect on those “drops in the Chemex”. Just how much influence can a drop  have?

It is worth stopping for one moment to consider what is going on around us at this moment. As I write this, it is late November in the Northern Hemisphere. Taking a walk outside, I can see the last of the yellow leaves falling off the trees. In just a couple of weeks time, many of the trees will be bare. Why do the leaves fall from the trees? We could answer this question in a number of different ways. Biologically, the tree is forming cells at the joint between the leaf and the tree that will eventually enable the leaf to tear from the tree. As these cells are, in some way, responsible for the leaf falling off, they are called “abscission” cells. But even with these abscission cells, the leaf still needs something to force the leaf off. Often this is the wind which is why we get such an abundance of leaf fall on windy days. However there is another mechanism that can help a leaf to drop, and that is a curious interplay between the leaf and rain.

autumnal scene, red leaves, hydrophilic
The surface of the leaf changes from waterproof to ‘wettable’ over the course of the summer

In the spring, many species of tree, including Oak, develop a wax layer on the leaf. Perhaps you have been walking in the country and have needed to wax your walking boots before you go? The wax on the boots acts as a waterproofing for the boot, ensuring that your feet don’t get soggy. The wax on an oak leaf performs the same function for the leaf, it makes the leaf waterproof. Although this is not the only function of the wax. It seems that a waxy surface also slows the processes that dry out the leaf, prevents insects and pathogens attacking the leaves and may even play a role in affecting the way that the light is concentrated into the leaves for photosynthesis. Nonetheless, from the tree’s perspective, it is a significant advantage to have waterproof leaves. Imagine rain falling onto a waterproof surface. The drops of rain do not ‘wet’ the leaves but instead roll off. As the raindrops roll off, they take particles of dust and dirt with them. It is a tree’s way of cleaning itself. Waterproof surfaces are self-cleaning surfaces. Something that some scientists are now trying to replicate for man-made products.

hydrophobic leaves
Some leaves are more waterproof than others.

As the summer continues and the leaf gets older, the wax layer changes. The structure of the wax changes and erodes as the wind, weather and even pollution batter the wax layer. Just as with the hiking boots, the damaged wax layer results in a less waterproof leaf. The leaf becomes “wettable”. When a drop falls on a surface, the shape of the droplet is determined by how waterproof the surface is (more details here). A surface is termed “wettable” when the droplet becomes significantly flatter and coats the surface rather than forming a spherical drop that can roll off. Now consider each raindrop as it hits the different types of leaf. In the spring, the leaf is waterproof and the raindrops will roll off them. A drop of rain will cause the leaf to shake on its stem but then to return to its original position. It is ultimately not affected by a light rain shower. In the autumn when the leaves are no longer waterproof, the rain will start to stick to the leaf surface. Now when the leaf shakes, the wet leaf will not return to its original position but will bend slightly further downwards. As it continues to rain, the leaf will experience a greater torque and this means that it is more likely to fall off the tree. As each rain drop hits the leaf, the likelihood that the leaf will tear away from the abscission cells at the base of the leaf increases. Each drop has an effect.

This also has an important consequence for some of our technology. One renewable energy source that has been proposed for self-powering electronic devices harnesses the energy of rain. When rain falls on an array of cantilevers, it forces the cantilever to bend and to oscillate. This energy can be harvested ( that is, changed into a form that is useful to us) by using small piezo-electric devices (that convert movement into electricity or vice versa) at the  base of the cantilever. When a tree leaf is wet, the leaf joint experiences a greater torque which causes the leaf to ultimately tear from the tree. For the rain-energy harvesters, this is exactly what we want. The greatest energy obtainable from the cantilever system will be from cantilevers that can be made wet. Waterproof cantilevers would be a bad idea. A renewable energy that comes from rain would definitely be a positive development for UK energy production!

It seems that one coffee drop does indeed go a long way.