unit definitions

Coffee Elephants

coffee Coromandel Coast, Indian Shade grown coffee
The coffee from Coromandel Coast. Chocolate, ginger and nougat. I got the chocolate and the nougat, though the taste profile changed quite significantly between brewing by a V60 or an Aeropress

The coffee from Coromandel Coast arrived in a box, in bags that were suitable for industrial composting, each printed with an elephant on the packaging. The elephant is the logo of Coromandel Coast and is a nod to the fact that all of their coffees (which include single origins and blends) originate in India. All of the coffees have been shade grown which helps with the carbon footprint of the coffee, hence the slogan “Climate solution in your cup”. Which means that it would have been easy to do a coffee-physics review based on the different ways that coffee can be grown and why shade grown coffee can be part of a climate solution for coffee. But that would have been too quick; one of the motivations for cafe-physics reviews (and the related coffee-physics reviews) is to slow down and explore how sitting down and contemplating a cafe (or just coffee) can lead to so many different but connected thought trains. Given that your attention is drawn to the issues of climate change, and what you can do, from the instant you order from Coromandel Coast, this seems to be too obvious, even if an incredibly useful, thought train. So, if you would like to follow that thought train while contemplating the coffee you are drinking, you can read more about the environmental impact of coffee growing here or here and the importance of shade grown coffee here. An alternative thought train may be provided by the elephants.

I purchased two coffees from Coromandel Coast: Ganga and Chalukya. The Ganga was a washed catuai peaberry coffee with tasting notes of “chocolate, ginger and nougat”. The chocolate definitely comes through when brewed in the V60 and the pureover while the Aeropress produces a somehow cleaner taste profile that I find characteristic of washed coffees. Coromandel Coast was established in 2017-8 and is both a coffee roaster and a cafe based in Croydon. All of the packaging is recyclable or compostable, including the box it arrives in which is additionally re-usable (and will be reused again a couple of times before it is eventually recycled).

The elephant stamp. Is every copy identical? Could we use one elephant to understand the others?

The ink-stamped elephant on the box is a nice touch and echoed on the coffee bags. You could perhaps start to think about ink printing, dyes and the invention of the printing press, there are plenty of thought-paths that open themselves out. But a chance conversation over the coffee provided a different direction into the ways in which physics is taught at schools.

It appears that the school of my interlocutor that day initiated the physics course with a very boring set of classes on units. I was asked that morning: why would the teacher have started teaching physics with such a boring set of lessons? But I wondered a separate question, how can units be boring? How sad that they were made to be so. For although they are of fundamental importance in how we explore and understand our world, and could perhaps be quite dry, they can also link elephants to the Sun and to the work we now do to understand coffee better. For if we start with elephants, it was a favourite unit of my physics teacher. Used for all manner of things when we omitted to include the units in our answers. Consider the coffee: it comes in bags of 250 what? 250 elephants? or 250 grammes? The elephant became a unit of frustration for the lack of stated proper units. But we can push the Coromandel Coast elephant link a bit further, for each elephant on the packet is an ink-stamped copy. They are different but identical, they serve as a standard.

neon sign, light emission
Light is emitted from different chemicals at certain, definite wavelengths. This is an effect you will have seen on many a high street in these neon signs where the colour is determined by the composition of the gas within the sign. We can use the reverse of this to identify chemicals based on what wavelengths they absorb. But to do that, we need to know that we are all measuring in the same units.

And the standards are important for units because we need to know that we are all measuring the same thing. When Anders Angstrom was measuring the absorption and emission spectra of the Sun and of different gases, he quoted the absorption lines in units of 1/10 of a nanometre (a unit now called the Angstrom). Different gasses will absorb (or emit) light at very specific frequencies or wavelengths. Being a very careful experimentalist, Angstrom had ensured that his measurements of the wavelengths that were absorbed or emitted were checked against the standard measure of length of the day, the metre. But at the time, the metre was defined by the length of a metal rod stored in Paris. All other standards of the metre were copies of this original one, including the metre kept at Uppsala where Angstrom was doing his experiments. An issue with metals is that they will age. With time you will get some shrinkage and some expansion owing to the formation of oxides etc. on the metal. The metre in Paris had aged in a different way to that in Uppsala which was just a tiny bit shorter than the Paris metre*. These differences would not be noticeable were Angstrom measuring the size of elephants, but instead he was concerned with measurements that were one ten-billionth of a metre. And at this scale, it mattered a great deal. Angstrom was aware of the systematic error in his results but it wasn’t until after his death that the error was fully hunted down and corrected for.

The position of the lines that Angstrom had been measuring reveal the chemical composition of the gases, and so knowing whether a line appears at 700 or 710 nm, reveals information about the chemical studied. We still use these spectroscopy techniques, not just for understanding gases, but also for checking the composition of medicines and for understanding the differences between Arabica and Robusta coffees. Which brings us back to the coffee, for while we no longer use a physical measure of length as our standard metre, we still use a standard definition of the metre that allows us to compare coffees and stellar spectra. It also allows us to appreciate the beauty in the uniformity of an ink-stamped elephant on a box housing an interesting and flavourful, climate sensitive, coffee.

You can order from Coromandel Coast here, or (post-lockdown) visit the cafe at Filtr, 53 Limpsfield Road, S. Croydon,, CR2 9LB

*To read more about the history of the definitions of units including the metre, click here. This anecdote was originally recorded in a book that I do not have physical access to at the moment owing to coronavirus restrictions. As soon as I get the name/author of the book, I’ll include it here.