Categories
Coffee cup science General Home experiments Observations Tea

Developing, a new way to slow down with coffee

Instant gratification takes too long.

Carrie Fisher

What do you think of instant coffee? Does it, as Carrie Fisher may have suggested, take too long? Or perhaps you think that instant coffee is a bad idea, coffee ought instead to be prepared well and slowly to be enjoyed at a leisurely pace. Many readers of this website are probably of the latter school of thought and yet I would like to offer a slightly different perspective. There is indeed a way that instant coffee can be used to really slow down and to re-evaluate our view of the world: Instant coffee makes a good, or at least adequate, photographic film developer.

developing photographic film in instant coffee
The developing fluid – the instant coffee granules have nearly dissolved.

The caffeine in the coffee acts as a reducing agent for the film (so tea should also work). Instant was suggested over filter coffee in online recipes owing to the greater control over the amount of caffeine in the brew (it would be far easier to get reproducible results mixing 5 teaspoons of instant into the developer than 300ml of whichever coffee is your brew of the day). So, as a first try, it is worth keeping to previously tried-and-tested recipes, in this case from photo-utopia.

5 heaped teaspoons of instant coffee

2 level teaspoons of washing soda

300 ml of water at around 25C.

washing soda, available in supermarkets
The second ingredient that you need to develop your photographic film in coffee – washing soda.

The washing soda (sodium carbonate, Na2CO3) can be purchased in many supermarkets where it is known as a more environmentally friendly laundry agent (it is not the cooking ingredient sodium bicarbonate, that apparently does not work). It is used to ‘activate’ the reducing agent. I admit to being a bit hazy on what that actually means. Where you get your instant coffee from is up to you.

The photos show the washing soda and then coffee being added to the water. Do try to rid yourself of any ideas about developing film amidst the lovely fragrance of coffee coming out of the developing tank. Something in the reaction between the washing soda and the coffee stinks. It was not as bad as I was anticipating (as I had read the warnings of the smell elsewhere) but rest assured, it is not pleasant!

instant coffee film developing fluid
The washing soda is already dissolved in the water here but the coffee has just been added. You need to dissolve the coffee fully for it to be a good developing fluid.

For detailed instructions about developing with the solution, please see photo-utopia but briefly, developing the film took 30 minutes with one inversion every 30 seconds. If you have ever tried sitting, developing film for 30 minutes doing nothing but inverting the developing tank every 30 seconds you will know that this is quite an exercise in slowing down. Are those images that you have been taking on your camera going to come out? Will they be under-developed, over-developed? Does coffee really work as a film developing fluid?

After 30 minutes the film was put into a water stop bath and then fixed with Ilford Rapid Fixer (although it is possible to use salt-water as a fixer, I thought it best to start by experimenting with the developing fluid alone first). A further bit of washing and the film was hung out to dry. This meant more patience, although we could see the images on the film, it was not possible to scan them until the film had thoroughly dried (we left it overnight).

What about the results? Well, the four images below are from the roll of Fuji Neopan 400 film that was developed with the coffee. We had to adjust the scanning a bit as the film was somewhat lightly developed (a higher concentration of caffeine or a longer developing time was needed), but you can see that the images have not come out too badly. It is truly possible to slow down and see things in a different way with instant coffee, but maybe not by drinking it.

Cogs, Wimbledon Common, Windmill, Contact S2b, instant coffee and washing soda developer
Cogs on Wimbledon Common, developed with coffee.
Brighton shellfish, mussels, prawns, cockles, whelks, jellied eels, instant coffee
Shellfish trailer, Brighton, developed in coffee.
Merry-go-round and pier developed with coffee
Brighton beach, developed in coffee.
Bench with heads developed in coffee
Chelsea Embankment, developed in coffee.

Next time I plan to swap the instant coffee for a brewed batch and see how that comes out. More photos will be uploaded from time to time, probably to a special “coffee pictures” page on the website (yet to be created). And if you have tried developing photographic film in coffee, please do share any images that you have developed (with coffee or tea, instant or otherwise).

I am incredibly grateful to ArtemisWorks Photography for helping with all aspects of this project and for fantastic patience when confronted with some daft questions. You may also be interested to see ArtemisWorks’ own café work, photographing London’s older style “caffs” many of which have now disappeared, the café galleries can be found here.

 

Creative Commons License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Categories
Coffee cup science Coffee review General Home experiments Tea

The idea of a coffee at A Wanted Man

We cannot do without a view, and we put up with an illusion, when we cannot get at a truth“.

A wanted man, Chelsea, coffee cup
A wanted man becomes visible under thin coffee.

A Wanted Man on Chelsea’s Kings Road is unusual in many respects. Firstly, never before have I been to an espresso ‘canteen’, but then, neither have I had a coffee in a café that is part coffee-shop part waxing salon. While both wax based hair removal and coffee rely on bees, this is surely not the connection between these two enterprises. Nonetheless, once your coffee-loyalty card is full, you can choose: free brow shape, bikini wax or coffee. The coffee comes from Common Man Coffee Roasters in Singapore so it would be interesting to know how it was transported to Chelsea in order to retain its freshness, surely each batch is not flown in? On our first visit, we had a rich and smooth long black, a lovely aromatic banana bread and a good hot chocolate (with soy milk). There is plenty of seating in the front of the café and some more towards the back near the bar which was all fairly empty on our first visit but far more crowded (with singly-occupied tables) on my second visit (see below).

As I drank my coffee, hidden wording became visible at the bottom of the cup. “A wanted man” appeared beneath the coffee when the coffee was sufficiently thin. By tilting the cup, this “critical” thickness could be estimated, as you can see in the photos. Ah-ha I thought, the physics bit of this cafe-physics-review will be easy! The absorption of light (which we could measure by the visibility of the writing at the bottom of the cup) is directly proportional to the thickness of the absorbing liquid, the coffee. This is the Beer-Lambert law which describes how light is absorbed through substances such as coffee in which there are molecules and bits of sediment that absorb light (which is ultimately why coffee appears brown). Could I experimentally verify this bit of the Beer-Lambert law by somehow quantifying the visibility of the wording as a function of cup-tilt angle?

a tilted coffee cup at a wanted man
Absorption is a function of thickness and concentration

Before I had thought that far, I had finished the coffee, however the second part of the Beer-Lambert law could be tested by having another coffee on a separate occasion. The other part of the Beer-Lambert law states that the absorption (that’s the (in)visibility of the wording on the cup in this case) is also directly proportional to the concentration of the absorbing molecules/sediment. This makes sense, weak coffee is far more transparent than overly extracted coffee. On my second visit, the coffee tasted slightly stronger, a bit different from my memories of the first occasion. Did the “A wanted man” become visible at a different tilt angle? I would guess – or perhaps that should read ‘hypothes-ise’ – that the angle on the second occasion would have to be lower (that the coffee would have to be thinner generally).

However, while sipping my coffee (before getting to the tilt-angle-test) and looking around the second time I noticed that all along the wall where previously there had been plenty of empty tables, each one was now singly occupied by somebody using a laptop, a phone/tablet or in one case, both of these items together. This second time, my mind started wandering into more social issues, while looking at our screens and immersed in social media, are we able to see more or less, than our less absorbed fellow citizens? Does social media clarify the detail or cloud important aspects of our understanding?

Beer-Lambert applied to twitter and Facebook
Does social media do this to you? The light absorption of a coffee is determined by the thickness of the coffee and concentration of absorption sites within it.

After considering these two points, it became clear that in some ways they are connected. Admittedly a loose connection, and not one that is strictly scientific but perhaps it’s worth ‘running with it’ for a bit and seeing if it leads anywhere. Just as with the Beer-Lambert law with coffee, the more ‘interacting sites’ (or absorption sites) we encounter on social media, the harder it is to see through to the bottom. Twitter, Facebook etc. can be enormously helpful for widening our networks and learning about new things. But, as has been frequently pointed out elsewhere, they can also become quite unhelpful when we are in an “echo chamber” or when we think that points can be made in mere soundbites. Is it possible that the more absorbing and reflecting sites that we encounter, the harder it is to see anything to any greater depth? What we need is time-out, for self-reflection and for considering points made by others, on Twitter, Facebook and elsewhere.

Perhaps the best way to end such a post is with a long quote by somebody else. In fact, the same person (and in the same book) as was quoted at the beginning of this article. Perhaps it would be something to consider while we drink our coffees and hover over the ‘retweet’ or ‘share’ button. Are we helping to probe the depths of our cup by the links we share, or are we merely adding to absorption sites in soundbites in our networks?

It requires a great deal of reading, or a wide range of information, to warrant us in putting forth our opinions on any serious subject; and without such learning the most original mind may be able indeed to dazzle, to amuse, to refute, to perplex, but not to come to any useful result or any trustworthy conclusion. There are indeed persons who profess a different view of the matter, and even act upon it. Every now and then you will find a person of vigorous or fertile mind, who relies upon his own resources, despises all former authors, and gives the world, with the utmost fearlessness, his views upon religion, or history, or any other popular subject. And his works may sell for a while; he may get a name in  his day; but this will be all. His readers are sure to find on the long run that his doctrines are mere theories, and not the expression of facts, that they are chaff instead of bread, and then his popularity drops as suddenly as it rose.

John Henry Newman, The idea of a university.

A Wanted Man can be found at 330 Kings Road, London

Categories
Coffee cup science Home experiments Tea

Scratching the surface in coffee week

reflections, surface tension
The effects of surface tension can be seen in the light reflected from a coffee

UK Coffee week is once again upon us meaning that all week we can be justified in thinking about, drinking, appreciating and celebrating coffee. And of course, as soon as we start to do this, we realise we have to drink, appreciate and celebrate water which is, ultimately, what really makes most of the cup of coffee. So UK Coffee Week raises money for Project Waterfall which is a charity that brings clean water to coffee growing communities. Giving something back by enjoying something good.

In keeping with the water theme, this week The Daily Grind is all about water, including an experiment that enables you to make a hole in it. As this is also the week between Palm Sunday and Easter, perhaps we could call the post “Holey water for Holy Week”.

But moving quickly to the experiment. While drinking your coffee, you may have noticed how around the edge of the cup, the coffee appears lighter, not quite so dark, as in the interior. The coffee is being bent upwards at the edge of the cup by the surface tension of the water in the coffee. Now, what happens if you add alcohol to the coffee? If you do this in your coffee cup you may well end up with an Irish coffee which may provide even more of an excuse to celebrate your coffee drinking, but if you were to put your coffee on a plate first (I know, why? but bear with me) you will get a quite different result. You will be able to make a hole in the middle of your coffee. The reason is that the surface tension of alcohol is much weaker than that of water. Consequently, if you try to mix a very thin layer of coffee with a small amount of alcohol, something slightly unexpected happens as this video shows:

The addition of a small amount of alcohol into the middle of a thin layer of water (or coffee) causes the water to recede. As the alcohol evaporates off, you are left with a dry ‘hole’ in the coffee. Why is this? It is effectively a liquid-tug-of-war on your plate. The higher surface tension in the coffee (or water) pulls against the weaker surface tension of the alcohol which eventually means that the water breaks away, leaving the hole. As the water molecules are continually moving, eventually they start to meet again over the dry spot and close the hole.

You can’t see this in your mug of course because the mixing occurs throughout the liquid while the plate ensures that this is only a surface effect.

You will need a strong alcohol, perhaps gin or vodka but please do try this experiment, let me know how you get on and enjoy the coffee, water (and alcohol) in UK Coffee week. And if you want to donate to Project Waterfall, you could either find a participating café here or donate online here.

 

Categories
Coffee cup science Home experiments Observations

Biscuit Crystals

biscuits gone wrong, crystals in the oven
Expanding biscuits are a 2D example of a close packed crystal lattice.

Blaise Pascal once wrote of the benefits of contemplating the vast, “infinite sphere”, of Nature before considering the opposite infinity, that of the minute¹. And although the subject of today’s Daily Grind involves neither infinitesimally small nor infinitely large, a consideration of biscuits and coffee can, I think lead to what Pascal described as “wonder” at the science of the very small and the fairly large.

The problem was that my biscuits went wrong. Fiddling about with the recipe had resulted in the biscuit dough expanding along the tray as the biscuits cooked. Each dough ball collapsed into a squashed mass of biscuit, each expanding until it was stopped by the tray-wall or the other biscuits in the tray. When the biscuits came out of the oven they were no longer biscuits in the plural but one big biscuit stretched across the tray. However looking at them more closely, it was clear that each biscuit had retained some of its identity and the super-biscuit was not really just one big biscuit but instead a 2D crystal of biscuits. The biscuits had formed a hexagonal lattice. For roughly circular elements (such as biscuits), this is the most efficient way to fill a space, as you may notice if you try to efficiently cut pie-circles out of pastry.

salt crystals
Salt crystals. Note the shape and the edges seem cuboid.

Of course, what we see in 2D has analogues in 3D (how do oranges stack in a box?) and what happens on the length scale of biscuits and oranges happens on smaller length scales too from coffee beans to atoms. Each atom stacking up like oranges in a box (or indeed coffee beans), to form regular, repeating structures known as crystal structures. To be described as a crystal, there has to be an atomic arrangement that repeats in a regular pattern. For oranges in a box, this could be what is known as “body centred cubic”, where the repeating unit is made up of 8 oranges that occupy the corners of a cube with one in the centre. Other repeating units could be hexagonal or tetragonal. It turns out that, in 3D, there are 14 possible such repeating units. Each of the crystals that you find in nature, from salt to sugar to chocolate and diamond can be described by one of these 14 basic crystal types. The type of crystal then determines the shape of the macroscopic object. Salt flakes that we sprinkle on our lunch for example are often cubic because of the underlying cubic structure on the atomic scale. Snowflakes have 6-fold symmetry because of the underlying hexagonal structure of ice.

It is possible to grow your own salt and sugar crystals. My initial experiments have not yet worked out well, but, if and when they do, expect a video (sped up of course!). In the meantime, perhaps we could take Pascal’s advice and wonder at the very (though not infinitesimally) small and biscuits. And if you’re wondering about where coffee comes into this? How better to contemplate your biscuit crystals than with a steaming mug of freshly brewed coffee?

¹Blaise Pascal, Pensées, XV 199

Categories
Allergy friendly Coffee review General Observations Science history

Thinking space at Le Peche Mignon

Coffee in Le Peche Mignon, Highbury, Islington
Le Peche Mignon in Highbury, hidden down a side street.

It was a balmy February morning when I met an old friend at Le Péché Mignon on Ronalds Road near Highbury and Islington. I had first come across Le Péché Mignon a few months ago when I had had a lovely coffee (and a great cake, I remember the staff being very helpful to check the ingredients for my nut allergy) but too little time to properly think about the space. So, when the opportunity arose to meet a friend (who I have known since we were both 5 but haven’t seen for many years) near Islington, I jumped at the opportunity to meet there.

This small but delightful café seems to be very popular. Both the bench seat in the window (where I had sat last time) and the long, sharing-table in the middle of the café were practically full by the time we arrived in the mid-morning. Fortunately, there was plenty of space in the quiet garden at the back for us to catch up for a couple of hours (and a couple of coffees!). The coffee is roasted by Monmouth, the Americano was very well done and there were quite a selection of pastries and salads on offer. One wall of the café was lined with bottles of wine while Carambars were available to purchase next to the counter.

brick wall at Le Peche Mignon
A join between two brick walls at Le Peche Mignon. How exactly are bricks made and why are they made that way?

The garden behind the café had plenty of tables and, even though it was February, it was warm enough for us to sit comfortably outside. One of the walls of the garden was formed by two sets of brick walls that had a join between them. The appearance of a separation between the walls, together with the weather, reminded me of the crack and the imminent demise of the Larson C ice shelf. However as this was probably too close to recent posts about climate change, I started thinking about defect structures in crystals instead. While pondering this though, my thoughts turned to an entirely different subject matter, the unusual toilet at Le Péché Mignon.

Just as the toilets in our old primary school, the toilet at Le Péché Mignon is outside, in the garden. This got us reminiscing about our old primary school which, during winter, regularly closed when the outside toilets froze (hopefully not a problem for the toilets at Le Péché Mignon!). And while the school has undergone significant renovation since then, it does get you thinking about the history (and engineering/science) of toilets. While this may seem an unpleasant subject for, what is after all a café review, please do bear with me because thinking about toilets can lead to surprising connections. For example, a recent New Yorker article about confirmation bias featured quite a discussion on toilets. How? It seems that while people generally tend to think that they understand how a toilet flush works, when asked to explain it step by step, they suddenly become far less confident. Our knowledge is not so great as we tend to think it is.

cup of coffee in Le Peche Mignon
From coffee cups to aeroplanes, the hardness and porosity of materials depends on the temperature that the starting materials were ‘baked’ at.

Which brings me back to Le Péché Mignon. The issue of flushing toilets became a problem for London in the mid-nineteenth century when the introduction of the “water closet” increased the volume of water flowing into the rather inadequate sewage system (if you are interested in the history of the toilet you can click here). The great engineer Joseph Bazalgette (1819-91) was commissioned to design and build London’s sewer system in which a network of tunnels were built across the capital. Bazalgette’s northern branch lies about 5 minutes walk north of Le Péché Mignon and runs from Hampstead Heath to Old Ford in Stratford. A distance of just 9 miles (14.4 Km), this particular tunnel has a remarkably steep gradient dropping at least 4feet (1.2m) every mile (1.6 Km). Imagine water flowing down a plug hole. The turbulence and speed of the water (ahem) flowing down this ‘drain’ means that Bazalgette had to think very carefully about how he lined this particular tunnel. If he had used ordinary bricks, such as those that make up the wall around the café’s garden, they would have eroded quickly with the turbulent motion of the water. Consequently, Bazalgette specified Staffordshire Blue bricks¹ to line this tunnel. During the manufacturing process, Staffordshire Blue bricks are baked at very high temperature (and in a low oxygen atmosphere) making them particularly resistant to erosion and to water absorption. It should not surprise us that the hardness, brittleness and texture of materials should be affected by the temperature at which they are formed after all, great care is taken about the temperatures at which chocolate is melted and allowed to re-solidify. Indeed, a vast amount of research is done to understand how different materials (from ceramics to metals) respond under different heat treatments. This research is important for applications as diverse as the walls of sewer tunnels to the design of aeroplanes. And, of course, to the design of better coffee cups, a thought with which we can return to thinking about this great little café.

Le Péché Mignon can be found at 6 Roland’s Road, N5 1XH

¹”The Great Stink of London…” Stephen Halliday, Sutton, 1999

 

 

http://www.plumbing-geek.com/howdoesatoiletwork.html

http://www.baus.org.uk/museum/164/the_flush_toilet

Categories
Sustainability/environmental Tea

Talking about coffee and climate change

coffee cake Muni
Coffee and chocolate, both of which may be badly affected by climate change.

Last week the Royal Meteorological Society hosted an afternoon of talks and discussion titled “Avoiding Myth, Mayhem and Myopia: the challenge of climate science communication”. The meeting coincided with a social media campaign “#showthelove” which aimed to highlight something that you fear is at risk because of climate change. As coffee is definitely one of those things that is at risk (and indeed is already being affected by climate change), I went along to the discussion to see what is already being done to communicate climate science and also, what we can do as science communicators.

Although I do not research climate science (my research involves superconductors), there are many links between coffee and the climate: clouds of steam, turbulent movement, periodic waves in the cup and of course the greenhouse effect. Additionally, the risks that coffee faces from the effects of climate change are dire. Summarised in the most recent report of the Intergovernmental Panel on Climate Change (AR5), the risks to coffee are threefold, 1) from a warming climate 2) from more extreme weather events, 3) from pests that have increased due to (1) and (2).

Currently about 27million acres of the Earth’s land is used to cultivate coffee, most of which is grown by small scale farmers. The effects of warming mean that this area is going to decrease substantially. For us consumers this is going to mean a dent in our pockets but for the estimated 120 million people worldwide who depend on coffee growing for their livelihood, it is likely to be catastrophic.

room full of scientists and others, RMetS meeting, discussion time
A good crowd meant a lively discussion at “Avoiding Myth, Mayhem and Myopia”. What should we communicate about climate science and how?

The odd weather patterns that are going to be more common are also going to affect the coffee yield. Severe droughts are likely to happen more frequently (this year’s drought in Brazil has actually prompted the government there to consider importing (robusta) coffee beans). Moreover the combination of higher temperatures and greater rainfall that has been seen recently in Central America has ‘helped’ outbreaks of coffee rust while the berry borer beetle is also benefitting from the warmer climate worldwide (at the expense of the coffee crop).

Among climate scientists, the issues are clear (for the world rather than just for coffee). Climate change is already happening and it is caused by human activity in the form of greenhouse gas emissions. The problems are how to communicate this knowledge both to policy makers and industry and to the public so that we, as a society, can do something about it. What do each of these groups want to know and how best to reach them? There were discussions at the meeting about how to engage with politicians and to ensure that the message is properly transmitted so as to translate into action but for me (as a non-climate-scientist who drinks a lot of coffee), the interesting bit was about communicating with the public. In this sense it was great to see that the meeting had attracted a diverse audience with both Oxfam and the Green Party represented. Two questions dominated here: How is climate change affecting us now (/will affect us in the future)? And, what can we each do about it?

Bob Ward, Obama quote, climate change
The last generation: Bob Ward emphasising the urgent need for scientists to communicate effectively.

In terms of the second question, it seemed agreed that the best thing that we each can do is to reduce our carbon footprint. A concern echoed by the Society’s recent communiqué written with other professional bodies (that you can read here). Simple things like driving less or buying more efficient washing machines (or other household appliances when they need to be replaced) can make a difference. Of course, if you wanted to, you can have a go at calculating your carbon footprint using tools such as this guide by David MacKay (it is a lot easier than it may seem at first glance). It was this aspect of what ‘we’ can do that some audience members (including a Green Party representative) thought was a key thing that scientists working with the Royal Meteorological Society needed to communicate. Expect to hear far more about how you can make a difference.

In general, it seemed that there was a clear feeling that the scientists there wanted to communicate climate science and the science of climate change more insistently and more clearly. Indeed there was a rallying call for us all to increase our science communication by Bob Ward (the Policy and Communications Director at the Grantham Research Institute of the London School of Economics). But how should scientists communicate? Is there an intrinsic conflict between the language typically used by scientists and the urgency of the message? Should climate scientists use emotion in their discussions about climate change and what about issues of trust? All these are too much for this piece and so I shall leave those questions until next week, for now perhaps, it would be worth asking people who read this to suggest something that they are doing to reduce their carbon footprint, it doesn’t have to be much and it doesn’t need to be about coffee (though it would be nice if there were some coffee ideas) but please do share your ideas for reducing your carbon footprint, it is likely that they will be useful for others too.

Next week: Do we speak the same language? Is scientific language a help or a hindrance when it comes to communicating climate change?

Categories
Coffee review Science history

In their Elements at Bean Reserve, Bangsar, KL

coffee in Bangsar at Bean Reserve
Bean Reserve, Bangsar, Kuala Lumpur. Note the logo on the window.

The first thing that struck me as I entered Bean Reserve in KL was the geometry. Somewhat hidden along a street behind Jalan Maarof, Bean Reserve offers a quiet space amidst the bustle of Bangsar. The 2D representation of a 3D object that is Bean Reserve’s logo is somehow mirrored in the choice of the tables and chairs that are contained in the cuboid space of this café. Triangular tables are arranged to form larger, quadrilateral tables. Circular stools nestle underneath square tables. Light streams into the café from a large window on one side of the room. The other side features a sliding door that was occasionally opened, revealing the desks of The Co, a co-working space that shares the building of Bean Reserve.

Although we only tried the drinks (an exceptionally fruity long black and a very cocoa-y iced chocolate), there looked to be an interesting selection of edibles on offer, with a bottle of chilli sauce stored behind the counter. Soy milk was available if you prefer non-dairy lattes and there were a good range of drinks on offer from nitro-cold brew to iced chocolate, just what can be needed in the heat of KL! Coffee is roasted by Bean Reserve themselves (who are both a café and a roastery), thereby providing the residents of (and visitors to) Bangsar with a seasonally varying range of great, freshly roasted coffee.

geometry at Bean Reserve
Triangular tables and circular stools.

The different geometrical features in the café immediately suggested Euclid to my thoughts. Written over 2300 years ago, Euclid’s The Elements was, for many years, the text book on geometry and mathematics. It is said that Abraham Lincoln taught himself the first 6 books of The Elements (there are 13 in total) at the age of 40 as training for his mind¹. Working from 5 postulates and a further 5 common notions, Euclid describes a series of elegant mathematical proofs, such as his proof of the Pythagoras theorem. And so, it may be appropriate that there is one more geometrical connection between the ancient Greeks and Bean Reserve: That sliding door that connects the café to the working space of The Co.

The space, occupied by The Co, behind the sliding door seems to be much larger than the café. But how much larger is it? Double the length? Double the volume? This is similar to the problem that perplexed the Delians. The idea is simple: Find the length of the side of a cube that has a volume exactly double that of a given cube. It is thought that the problem may have been formulated by the Pythagoreans, who, having succeeded in finding a method of doubling the square (see schematic), extended that idea to 3D. Could a simple geometrical method be used to double the cube? (There is of course the alternative legend about the problem having been given to the Delians by the Oracle)

A geometrical method for finding the length of a square with twice the area of a given square… now for 3D

It turns out that this is a tough problem, but one that may again have relevance for our world today. While researching this café-physics review, I came across a book by TL Heath² that had been published in 1921. In his introduction he wrote:

The work was begun in 1913, but the bulk of it was written, as a distraction, during the first three years of the war, the hideous course of which seemed day by day to enforce the profound truth conveyed in the answer of Plato to the Delians. When they consulted him on the problem set them by the Oracle, namely that of duplicating the cube, he replied, ‘It must be supposed, not that the god specially wished this problem solved, but that he would have the Greeks desist from war and wickedness and cultivate the Muses, so that, their passions being assuaged by philosophy and mathematics, they might live in innocent and mutually helpful intercourse with one another’.

 

 

Bean Reserve can be found at 8 Lengkok Abdullah, Bangsar, 59000 Kuala Lumpur, Malaysia

¹History of Mathematics, An Introduction, 3rd Ed. DM Burton, McGraw-Hill, 1997

²A History of Greek Mathematics, Thomas Heath, Oxford at the Clarendon Press, 1921

 

Categories
General Home experiments Observations Science history slow Tea

Reflections on physics and coffee

BeanThinking started as a way of slowing down and appreciating connections, often between a coffee and the physics of the wider world but also in terms of what can be noticed in any café. Perhaps, for this first post of 2017, it’s worth spending five minutes looking at your coffee while you drink it to see what you notice. Here are a few coffee connections that occurred to me recently:

reflections, surface tension
Reflections on a coffee.

Parallel lines and surface reflection: The parallel lines on the ceiling of a café were reflected in a long black. Surface tension effects on the coffee meant that the reflections were curved and not at all parallel. A piece of dust on the surface of the coffee was revealed in the reflection by the curved reflections of the ceiling. Astronomers can use similar effects (where images of a star appear in a different location to that expected) to infer the presence of dark objects between distant stars and their telescope. This gravitational lensing can be used to detect quasars or clusters of galaxies.

 

 

 

layering of coffee long black
Layers of coffee

Layering of crema as the coffee is consumed: The coffee stain effect and this layering of the crema suggests a connection between a coffee cup and geology. It used to be my habit to take a mug of tea with me when I taught small groups of undergraduates. In the course of one of these tutorials, a student (who had been observing similar layering in my tea mug) said, “You drink your tea faster when it is cooler than when it is hot”. Full marks for observation, but not sure what it said about his attention during my tutorials! Similar observations though can help geologists estimate the age of different fossils.

 

interference patterns on coffee
Bubbles in coffee

Bubble reflections: An old one but the interference patterns caused by bubbles on the surface of the coffee are full of fascinating physics. The fact that the bubbles are at the side of the cup and seem to be grouped into clusters of bubbles may also be connected with surface tension effects (although there is a piece of weather lore that connects the position of the bubbles to the weather. If anyone ever does any experiments to investigate this particular lore, I’d love to hear about them).

 

 

Coffee, Van Gogh
Art in a coffee cup

Van Gogh’s Starry Night: The effects of vortices and turbulence caused the crema of a black coffee to swirl into patterns reminiscent of this famous painting by Van Gogh. As a result of posting this image on Twitter, @imthursty sent me a link to this preprint of a paper submitted to the arxiv: the connections between Van Gogh’s work and turbulence. A great piece of coffee combining with art and science.

 

So many connections can be made between tea, coffee and science and the wider world, I’d love to see the connections that other people make. So, if you see some interesting physics, science or connections in your coffee cup, why not email me, or contact me via FB or Twitter.

 

Categories
General Home experiments Observations Tea

An easy way to get a halo

The other day I was talking to a primary school child about condensation, what it was, where to see it etc. So I asked,

“Do you drink coffee?”

“No.”

“Do you drink tea?”

“No”

(I started to worry about the future generations). Nonetheless, I pulled out my cup of steaming coffee and pointed to the water droplets around the edge of the mug (which are very common if you haven’t warmed your cup before pouring your hot coffee into it) and noticed a sudden expression of recognition cross the child’s face.

“Like when you breathe on a mirror?”

Kettle drum at Amoret
Condensation on around the top of the jug on this V60

Yes, exactly so (and probably a much better example for a kid anyway, the problem of being an adult with a one track mind!). As the child had realised, the science in your coffee cup is connected to phenomena that occur elsewhere in the world. In the case of condensation, it occurs when the temperature of the surface onto which condensation happens is below what is called the “dew point”. Determined by the relative humidity in the environment, the dew point is the temperature below which water vapour in the air will condense into liquid water.

Of course the dew point gets its name from the dew that can form after a chilly night. Which brings us to another property of those water droplets that form around the rim of your coffee mug. Although it is not easy to see on the mug, each droplet is acting as a lens, focussing the light that falls onto it. As the surface of the mug is fairly flat, rather than form spherical droplets, the drops that form on the side of the mug are squashed hemispheres. This is not the case when dew forms on grass. Tiny hairs on the surface of the grass protrude from the leaf meaning that the water droplets form into spheres (which is, incidentally very similar to the reason that a duck is so waterproof). When the sun comes up, each sphere of water focusses the sunlight onto the grass behind it which reflects it back, right in the direction it came from.

heiligenschein, self portrait
Self-portrait with weak heiligenschein. Share your photos with me on FB or Twitter.

This means that if you stand with your back to the sun and look at your shadow on dew covered grass, you will very probably see a region of bright light surrounding your head, your heiligenschein. German for “Holy light”, heiligenschein is the effect of all of those spherical dew lenses reflecting the sunlight back towards you. You can only see the effect around your ‘anti-solar’ point (a position defined as being 180º from the Sun from the viewpoint of the observer, see here for what this means visually). This means that while you will see heilgenschein around your head, or around the shadow of the camera that you use to photograph it, you will never see the halo around someone else’s head even while they themselves can clearly see it.

I’m sure there’s some sort of metaphor there, perhaps one to contemplate next time you’re drinking a hot, steaming coffee.

 

Categories
Coffee cup science Observations Tea

Coffee: The mathematical and the beautiful

Last week, a new study was published that explored the mathematics behind brewing the perfect filter coffee.  The research, summarised here, modelled the brewing process as being composed of a quick, surface extraction from the coffee grounds, coupled with a slower brew, where the water was able to get into the interior of the coffee grind. It was an interesting study and the authors are now looking at grind shape and the effect of how you wet the grounds. However, what struck me was that the authors mentioned scanning electron microscopy (SEM) images of ground coffee. A lovely idea, what does coffee look like when magnified hundreds (or thousands) of times?

So here are a few images that I found shared under Creative Commons Licenses. I hope you find them as fascinating as I do.

1) A green coffee bean:

Green coffee bean under the microscope
A green coffee bean. Sadly no details as to magnification. Image shared under CC license from Nestle, Flickr

2) Instant Coffee

Instant coffee from Nestle
Spray dried instant coffee from the Nestle, Flickr account. Image shared under CC license.

3) Roast and ground coffee (fluorescence microscopy image)

ground coffee, fluorescence image
Ever wondered what your coffee looked like when magnified many times? This image using fluorescence microscopy is of roasted coffee. Note the similarities between this image and the following one (which has a scale bar).  Image shared under CC license from Nestle, Flickr

3b) More ground, roasted coffee, this time from Zeiss

Zeiss roast coffee
Scanning electron microscope image of roast (and ground) coffee magnified 750x. Image from Zeiss, Flickr, Todd Simpson, UWO Nanofabrication Facility. Shared under CC license. (To put the scale bar in perspective, it is the size of the smallest particles in an espresso grind. Clearly, the grind here is quite coarse).

4) Finally, an image of tea, just to keep this article tea-coffee balanced:

Green tea under the microscope
Green tea as seen under the microscope by the scientists at Nestle. Shared under CC license Nestle, Flickr.

If you come across any great images of coffee (or tea) under the microscope, please do share them. In the meanwhile, enjoy your coffee however you brew it.