Coffee (beans) in the blood?

Brazil nut effect

A green bean ‘floating’ in coffee grounds. When you pour your beans into your grinder, do they behave like a liquid flow or do they have their own type of ‘granular’ flow?

When you first learn about liquids, solids and gases, you may learn about the fact that a solid keeps its shape whereas a liquid flows. A solid is rigid and can be moved as one block whereas a liquid will spread and change shape. Solids can be stacked up like bricks though this is not true of liquids.

A slightly unfair question is then put to you. What about sand? (Or, in the context of this website, what about coffee beans?). A pile of beans will initially stack but as the pile builds, avalanches will occur to prevent the tower being too vertical. When you pour your beans into your grinder hopper, the beans will level out, in much the same way as the eventual coffee will in the cup. Do the collection of coffee beans move more as if they are a liquid or a solid?

Clearly to some extent the question is wrong, the beans represent their own class of structure but perhaps a better way of asking the question would be, how do a collection of coffee beans flow? It is a question with consequences beyond the coffee hopper. From pharmaceuticals to civil engineering projects and beyond, understanding how granular materials flow is an important topic.

Beans on a plate. The aspect ratio of the coffee bean is similar to that of the particles used in a new study to analyse granular flow.

And yet it has apparently been difficult to analyse this problem owing to the difficulty in tracking individual coffee beans (tablets or particles of cement) as they are pushed in one direction or another. A start was made nearly 20 years ago when a team at the University of Chicago used Magnetic Resonance Imaging (MRI, yes, the same MRI as you get in hospitals) to image individual mustard and poppy seeds as they flowed between two cylinders. The imaging allowed researchers to track the position and velocity and packing density of the seeds as they moved around the cylinders. Then, last year a new study used X-ray tomography to watch individual particles in a rectangular box as they were subjected to being pushed at various pressures in different directions. This, more recent study used plastic ellipses with a minor axis of 6.35mm and an aspect ratio of 1.5. Sadly, not real coffee beans but a fairly large plastic equivalent. While the aspect ratio will of course vary from varietal to varietal and even bean to bean, the coffee beans in my hopper at the moment have an aspect ratio of 1.3 (and a minor axis of 4.5mm) which makes them pretty close to the plastic used in the study.

Brew&Bread, latte art Sun, KL latte art

The structures in milk allow the milk to be ‘frothed’ and so enable latte art. They also make milk an example of a complex fluid.

By tracking each bean, the study discovered that such granular collections moved as if they were “complex fluids”. Which is all very well but does makes you wonder, what is a complex fluid? Is coffee a complex fluid?

Does the definition help? The definition on the Physics (APS) website says that: complex fluids “can be considered homogeneous at the macroscopic (or bulk) scale, but are disordered at the “microscopic” scale, and possess structure at an intermediate scale.”. What does that mean? Well, it seems to mean that complex fluids contain things that are larger than the molecules that make up the liquid and so affect how the fluid flows. Milk has long chains of proteins and fats (which give it the foam like qualities when it is frothed in a cappuccino) and so is a complex fluid. Chocolate and blood are other complex fluids as are emulsions and gels. Pure water would not be a complex fluid and my guess is that coffee (which contains water molecules and various molecules associated with the coffee itself) is also not a complex fluid. Were you to have a latte or a cortado though, the milk would transform your coffee into a complex fluid. Although I much prefer to keep my coffee simple, it would seem that there is more to the saying “you have coffee in your blood” than it would at first appear, particularly as regards the coffee beans. It may be time for some experimental tests of coffee bean (and coffee or latte liquid) flow….

Leave a Reply

Your email address will not be published. Required fields are marked *