Patterns in a tea cup

light patterns on the bottom of a tea cup

Looking into my peppermint tea. Dancing filaments of light are just visible

Have I been unfair to tea drinkers? It has been pointed out to me on more than one occasion recently that tea is also a good source of science in a cup. So, last week, I drank a large amount of tea and started gazing into my (peppermint) tea cup. I watched as dancing lines of light played on the bottom of the cup. Never staying in one position for long, the filaments moved around, snaking across the tea cup. You can possibly see them in the picture on the right, although you would get a better view of them if you watched them dance yourself in a cup of freshly made tea. Similar lines can often be seen at the bottom of the swimming pool. Such lines of light must be caused by something in the water (or tea) bending the light from the surface into concentrated patches on the bottom. But are the two effects, though visually similar, caused by the same thing? And, what can this possibly have to do with forensic science and drug dealers?

straw, water, glass

When light travels from one medium to another (e.g. air to water) it gets bent by refraction

When light passes from air into a transparent medium (eg. into tea) it gets ‘bent’, in a process called refraction. This is why a spoon (or straw) put into a glass of water looks bent when viewed from the side (see picture). The amount that the light bends is dependent on the angle at which it hits the tea surface and by the density of the tea. The fact that you have to be able to see the bottom of the cup to see this effect, makes tea ideal for viewing it. (If your coffee is transparent enough to view these dancing lines of light, you may well want to check that you are brewing it correctly).

I’m not an optics person but it strikes me that there are at least two easy ways for these light patterns to form. Firstly, small waves on the surface of the water/tea will cause the light hitting the waves to be refracted by different angles as they go through the water. The patterns that form on the bottom of the pool/cup will therefore move with the waves. It is easy to see how such waves could form in a swimming pool, it is not so easy to imagine them in a tea cup. A second way to form these patterns is if the light is refracted through regions of different density, such as slightly hotter and slightly cooler tea. Such regions will occur in a tea cup because the tea is being cooled at the surface by contact with cool air and so there will be a continuous convection process in the cup. Warm water is less dense than cold water* and so will refract light slightly less than cold water will. Consequently, as the slightly cooler and slightly warmer regions of tea bend the light by slightly different amounts you should see patterns forming on the bottom of the cup as different amounts of light get to the bottom at each point.

So we have two possible causes for the light patterns on the bottom of a tea cup. How could we distinguish between them? Perhaps it would be an idea to get two identical cups, one filled with cold water, one with hot water (or a clear tea such as peppermint). Which shows the dancing filaments? Both of them, neither of them? Another experiment could be to observe the filaments in a cup of hot tea and then wait for the tea to cool. Do the light patterns fade as the tea cools?

tea pot science

Not always coffee. Tea can be interesting too.

The link to forensic science comes from the fact that light passing through transparent substances of different density will be ‘bent’ by different amounts. Imagine a drug dealer has been caught with some illegal substance wrapped in cling film. Although it looks to us like any other piece of cling film, that piece of film has been made in a specific factory at a specific time. This means that the roll of cling film that this piece was taken from will share variations in thickness and density with the cling film wrap. A type of cling film ‘finger print’. The density variation in the cling film can be photographed with a technique called the Schlieren photograph which exploits the fact that the light is refracted by varying amounts as it passes through these varying densities. If the police can get hold of the cling film in the suspected drug dealers home, this too can be imaged. If the ‘finger prints’ (changes in density etc.) of the two samples of cling film match, the suspect may be in significant trouble. The motto of this: Ensure that you have a decoy roll of cling film to hand before wrapping anything or, what is probably much better, spend time contemplating your tea in a café instead.

What do you think causes these patterns? What do your experiments reveal? Comments always welcome, please leave them in the box below.

 

* Between 0-4ºC the density of water decreases with decreasing temperature. For the purposes of this blog article it is assumed that you are drinking normal tea at around 60ºC rather than ice tea.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

*