Just imagine, you are trying to fill 3 espresso cups at once but all you have is a portafilter with two spouts and a balloon? Ok, that sounds unlikely. The experiment that I’m going to describe however will allow you to bend a stream of coffee with a balloon. Moreover, in order to work it relies on sub-atomic particles. What a party trick; investigating sub-atomic physics while filling two cups with one stream of coffee. It could be mind bending, instead it is coffee bending.
What happens?
When you rub an inflated balloon on your (dry) hair, electrons are transferred from your hair to the rubber balloon. Electrons are, of course, sub-atomic particles and, together with protons and neutrons, they build up atoms. As these electrons carry an electric charge, the balloon becomes the source of a static electric field.
The electric field from the balloon aligns the water molecules such that the coffee gets attracted towards the balloon.
Water molecules are composed of two hydrogen atoms and an oxygen each. They are electrically neutral. However water is also a strongly polar molecule, meaning that when it is subjected to an electric field, the molecules will tend to align such that they are more positively charged closer to the negatively charged balloon and more negatively charged further away from the balloon. This charge distribution means that the stream of water gets attracted towards the balloon. The amount that the coffee stream bends is dependent on the strength of the electric field from the balloon and the mass of the stream which is still being pulled down by gravity.
The video suggests using cold brew coffee when you test this at home. There are two reasons for this. Firstly, if the balloon gets too close to the coffee stream, it can get splashed. There is a chance that this may burst the balloon. Secondly, and more fundamentally, the water molecules are more agitated at higher energies (temperatures). This means that thermal agitation weakens the average dipole moment of the water thereby weakening the attraction between the coffee stream and the balloon. In this effect as in its taste, cold brew is a stronger drink than your ordinary hot filter.
Let me know if you try this and how you get on. It would be particularly interesting to see any attempts made on bending coffee from an espresso machine. My thanks, as always, to artemisdraws for the helpful schematic shown here.
Arepa and Co are on the right hand side of this canal
Edmond Halley (of comet fame) was born in the London district of Haggerston in 1656. More recently, Arepa and Co a Venezuelan cafe located alongside the canal that runs through the district, has just celebrated its first birthday there. This cafe serves a variety of Venezuelan foods including the arepas of the name which are, apparently, a traditional corn cake that can be filled with a variety of fillings (more info here). There are seats both inside the cafe or outside, overlooking the canal. As it was the early afternoon and we’d already had lunch, we decided upon a coffee, a sugar cane lemonade and, to accompany it a plate of Tequenos de Chocolate. These unusual little pancakes filled with chocolate were delightful to enjoy with a cup of coffee and a view over the canal. Sitting back and enjoying this relaxing view, I noticed a tree on the roof of a building on the opposite side of the canal. Hanging on the tree were a number of glass shapes. As the wind blew, the different faces of the shapes caught the Sun. Looking towards these glass shapes, they appeared to change colour as the sunlight was refracted through them. A glinting rainbow array of light fell onto our side of the canal.
The story of the investigation of colour is a great example of how our preconceived ideas can influence the results that we think we see. Up until the seventeenth century, colour was viewed as a property of the surfaces of an object as opposed to “light” which was that which rendered objects visible. Therefore trying to explain how rainbows formed or light scattered from ornaments was a difficult task. Indeed, medieval philosophers (the term ‘scientist’ is a nineteenth century invention), considered that there were only seven colours: Yellow, orange, red, purple, green and black and white.
Work understanding colour as a refracted component of white light started with Marci in his 1648 work Thaumantias (another name for Iris, the Greek goddess of the rainbow) and continued with Newton’s famous experiments with prisms. Newton showed that a glass prism refracted the different colours of light by different amounts (resulting in a spectrum). If two prisms were placed at right angles to each other, the rainbow of light from the first prism recombined into white light emerging from the second. With the change in mindset that this brought about, phenomena such as the rainbow could be more easily explained.
The Devereux pub now stands on the site of the Grecian coffee house, a former meeting place of the Royal Society
Which brings me back to coffee. Back in the eighteenth century cafes (or coffee houses) were not just places to have coffee but places to engage in the latest philosophical, political or scientific discussion and debate. Scientists of the day regularly gave public lectures and demonstrations in coffee houses both as a way of entertainment and of education. One scientist who participated in this was Stephen Demainbray (1710-1782). Demainbray demonstrated Newton’s experiments and theories on colour to a coffee drinking audience. The models that he used to explain the refraction of light are now on display in the Science Museum which is well worth a visit if you are in London. In the present day, there are still cafes and coffee houses that try to do a similar thing (of showing fun science to a coffee drinking audience), although perhaps sadly there are fewer now than there were then. Two movements that are trying to put the science back into coffee houses are Science Cafes and Cafe Scientifique. Although not always held in cafes, both movements have the aim of combining interesting science with a cup of coffee or glass of wine. Somewhat poetically the next Cafe Scientifique in London is to be held, on the 9th December, at the Royal Society. It is poetic because back in the time of Newton, discussions with the Royal Society president (Newton) and other society members took place at the Grecian Coffee House.
Both “Science Cafes” and “Cafe Scientifique” have events worldwide. It is worth taking a look at their websites to see if there is an event near you. Why not pop along and see what you can find out while having a cup of coffee?
Sources used:
The Rainbow Bridge, Raymond L Lee, Jr and Alistair B Fraser, Pennsylvania State University Press, 2002
The Nature of Light, Vasco Ronchi, Heinemann, 1970
London Coffee Houses, Bryant Lillywhite, George Allen & Unwin Ltd, 1963
Have you ever sat waiting for someone in a coffee shop, slightly bored? Resisting the urge to check your email or Twitter on the phone (perhaps the battery is dead), you have been stirring your coffee and playing with the vortices that form behind the spoon. Have you wondered why they form? Or played with detaching a vortex from the spoon and getting it to ‘bounce’ off of the side of the cup?
The spiral around this chimney helps to prevent vortex formation in high winds
Such vortices form behind objects in a flow of liquid when either the speed of the liquid, or the size of the object, reaches a critical value. The research about how and why these vortices form is a huge field. From improvements to plane design, through understanding insect flight and even into how wind instruments such as flutes work, understanding these vortices is a challenging topic. It is also useful to know about the behaviour of these vortices when designing chimneys in order to prevent their collapse.
Chimneys are of course stationary, but when they are in high winds, vortices form around the chimney just like the vortices behind the spoon (rather than the spoon moving through the coffee, the wind moves past the chimney). At relatively low speeds, the wind forms small whirlwinds as we see behind the spoon in the coffee. At higher wind speeds, the vortices forming behind the chimney can start to detach and form a pattern known as a Karman vortex sheet. As each vortex detaches from the chimney it subjects the chimney to a small force. Under some conditions and around some objects, this can result in the rather beautiful sounds of the Aeolian harp. Under more extreme conditions, it can result in the collapse of chimneys. The Ferrybridge C cooling towers collapsed in 1965 in high winds as a result of the turbulence around the cooling towers. To minimise the chances of such vortex sheets forming, chimneys are now designed with a spiral pattern (pictured) around them. Far from being an aesthetic feature, this spiral channels the wind so that vortex sheets cannot form behind the chimney.
Something to think about next time you’re waiting for someone in a cafe.
The sign board at Esters. Note the zig zag underline
As a website based on the physics inside a coffee cup, it was only a matter of time before I visited Esters in Stoke Newington. The name has significance to anyone interested in the physics (or chemistry) of coffee and the signboard outside the shop confirmed it. Under the name, there is a zig zag underline that represents part of a molecular structure. The end of each straight line signifies a carbon atom which is bonded to its neighbouring carbon atom by either a single (one line) or a double (two lines) bond. Inside you can enjoy (as I did) single estate coffees that can be prepared (if there are 2 or 3 of you) in a Chemex, appropriately enough. As I left Esters, I wandered through a local park where, near the entrance to the park, were two helium balloons caught in a tree. One had deflated, the other floated, dejectedly, just beneath the branches. Such a timely observation! The story of the discovery of helium connects the signboard at Esters, a cup of coffee and helium itself, how could that be? You’ll just have to keep reading to find out.
The colours of “neon signs” depend on the particular gas (eg. neon) in the tubes
Helium is the second most plentiful element in the universe but on earth it is relatively rare. It was therefore not discovered on earth but, instead, by looking at the Sun. Its ‘discovery’ in the Sun was due to the way in which atoms interact with light. The atoms in each element emit (or absorb) light at specific frequencies. These frequencies correspond to different colours. It is this property of atoms that creates colours such as the distinctive hue of neon lights. In 1868 two astronomers were observing the same solar eclipse. Independently of each other, they noticed a distinct emission of light from the Sun at a wavelength of 587.49 nanometres (yellow-ish). This emission line corresponded to no element that had been found on earth and so one of them, Norman Lockyer suggested naming this new element helium, after ‘Helios’ the Greek god of the Sun. Helium was not found on earth for another 27 years when William Ramsay isolated it from a uranium based compound. The gas that Ramsay extracted, absorbed and emitted light at the same frequency as the two astronomers had observed for the element in the Sun. Helium had been found on earth.
Atoms absorb (and emit) light because of the way that the electrons in the atoms are arranged around the atomic nucleus. The electrons exist in discrete energy states that we can imagine as rungs on a ladder. Electrons move between the states by absorbing, or emitting, light at specific energies (corresponding to a step up, or a step down on the ladder). As the energy of light depends on its frequency, the colour of an element depends on the spacing of the rungs of this atomic ladder, which is different for different elements. The energy ladder of helium atoms means that helium emits light at 587.49 nanometres. In organic molecules (ie. all the molecules that make up you and I and coffee), it is often the double carbon bonds that provide the energy ‘step’ in the visible range of light. Depending on the number of carbon atoms that are double bonded and the number in the molecule that are not, the energy step is tweaked slightly so that it will absorb in the red region in some materials and in the blue in others. We have our link between the sign at Esters and the observations of the astronomers.
However the explanation above depends on knowing some properties of electrons in atoms and some details of quantum mechanics. Neither electrons (discovered in 1897) nor quantum mechanics were known to the discoverers of helium. How did the astronomers recognise that their observation of a particular colour of light meant that they had identified a new element? Part of the answer must be based on experience. Experimentalists had already found out that different materials absorbed (and emitted) light at different but specific, frequencies. The other part of the answer brings us to our link with coffee.
A milk ring in water. Once it was thought that atoms might look like this (but a lot smaller).
In the video Coffee Smoke rings, we can make rings of milk travel through coffee or water. These rings are vortices which are closed up on themselves to form a doughnut shape. Mathematically, the vortex ring is a completely stable structure, it never decays. You could argue that the reason that it decays in the video is because we live in a non-ideal world with non-ideal liquids (milk and water). Returning to the mathematical world, each vortex ring will vibrate at specific, (resonance) frequencies dependent on its diameter, just like a bell rings with a note dependent on the size of the bell. So, even without knowing about electrons or quantum mechanics, it becomes conceivable that the atoms that go to make up a substance have specific resonance frequencies. If you imagine that atoms are in fact extremely small vortex rings (of the kind you find in a coffee cup), the model even has a predictive power. In 1867 William Thomson proposed such a “vortex atom” model and suggested that the distinct vibrations of the rings led to energy levels, like the ladders of later quantum mechanics and exactly of the sort that were observed by the astronomers. By considering that a sodium atom was made out of two inter-locked vortex rings, the light emission of sodium could even be accounted for. It was therefore entirely conceivable that elements would have distinct fingerprints as the astronomers had observed for this new element, helium.
We have therefore found the connection between the signboard at Esters, milk rings in a coffee cup and the discovery of helium. You would be forgiven for thinking that part of the connection is purely historical, after all, our current models of the atom do not rely on vortex rings at all. However, there is a relatively new theory called “string theory”. More fundamental than atoms, string theory proposes that there exist ‘strings’ that may be closed on themselves and that have specific vibrations that depend on their size and geometry. Sound familiar? Perhaps the connection with the milk rings lives on.