Categories
Coffee review General Observations Science history Tea

Time standing still at VCR, Kuala Lumpur

VCR chalkboard
A trip down memory lane via a new cafe. VCR in Bangsar, KL

One of the first science-based talks I gave was about how VCR tapes worked. Depending on how you viewed it (and whether you had to listen), this was either an achievement given that I was at school and didn’t really understand magnetism nor magnetoresistive devices, or a thing to be suffered through (for much the same reasons). So when I learned that a new café called VCR had opened in Bangsar in Kuala Lumpur, it prompted a series of fond (and a few embarrassing) memories.

Moving on, it is clear that this second branch of VCR (the first is in Pudu, in the main part of KL), aims to provoke such memories of times past. From the name of the wifi to the pulleys behind the counter and the wooden screen at the back of the café, various details around the café pull your memory in different directions. However the coffee is very much in the present. With three types of coffee available to try as a pour over as well as the standard espresso based drinks, this café has a lot to offer. The coffee is roasted by VCR themselves in their Pudu branch. There is also an extensive food menu with an interesting Chawan mushi as well as an intricate avocado toast (topped with pomegranate seeds, toasted quinoa and feta).

coffee at VCR Bangsar
Coffee and pour over jug. But is the number 68 or 89?

The friendly baristas were happy to advise on which coffee to match with which brewing device (though there seemed a marked preference for V60s on the days I visited). In total I tried 4 pour-overs, one with the Kalita Wave and the others by V60. These coffees were all excellent but very different. A couple were fruity, one was sweet and full bodied, one reminded me a bit of the local fruit durian, not I hasten to add because of its taste, but because the aroma from the cup was so different from the flavour of the drink. It was a great privilege to be able to try these different coffees consecutively and to really experience the variety of flavours in coffee. Great care was taken while making the pour over before it was brought over to the table, together with a jug of water, it also seemed to me that the baristas kept a discreet eye on me afterwards to ensure I enjoyed the coffee. So it was a good experience to have had the opportunity both to enjoy one of those pour overs and to observe the people and the surroundings of VCR when I had to wait for 1 hour for someone with no phone and no book. If you get the opportunity to do this I would very much recommend it. Find a comfortable café, order a coffee and then sit, without distractions, and watch what your mind notices and where it wanders for an hour.

An obvious place for a mind to wander would be to the mechanism of tape recording (and why mini-disks are the superior recording medium for the elegance of the physics involved). However, in an hour a mind wanders far further than the name. Supporting the cakes (and a display case for the 2nd place award of the brewers cup), was a table with a concertina type decoration around its edge. Was this a nod to the Kalita Wave brewing device? This is a significant difference between the V60 and the Kalita Wave: the ridges (or wave pattern) on the filter of the latter. How does coffee flow past these ridges? Does this difference in flow dynamics make a difference to the taste of the coffee?

variables grind size, pour rate, pour vorticity
It seems that there would be a lot of physics to observe in the fluid flow in a Kalita Wave filter.

A few weeks previously a friend had made a (lovely) coffee with her Kalita Wave. It was interesting to note the different dose of coffee she used and the way the grinds built up in the ridges (compared with my ‘normal’ V60). Why do the grinds end up in the ridges? Why is there a layer of dust on the blades of a fan? Why do some corners of a building collect more dust or leaves than others? Are these questions related and does it change the flavour of the coffee in the Kalita?

In fact, there are many subtleties in understanding how fluids move around solid objects. One of these is that at the interface of the fluid with the solid, the fluid does not flow at all, there is a stationary layer. Known as a boundary layer or Prandtl boundary layer (after the person who first suggested their existence, Ludwig Prandtl), realising these layers existed revolutionised the field of aerodynamics. The problem had been how to model the drag experienced by a solid object in a fluid flow. Although perhaps only of academic interest in terms of the flow of coffee around a Kalita filter or a spoon, by the end of the nineteenth century and particularly, with the invention of airplanes, how to calculate fluid (i.e air) flow around a solid (i.e. wing) object became very important for practical reasons.

vortices, turbulence, coffee cup physics, coffee cup science
Another cool consequence of boundary layers:
Vortices created at the walls of a mug when the whole cup of coffee is placed on a rotating object (such as a record player).

Prandtl introduced the concept of a boundary layer in 1904. The idea allowed physicists to treat the main body of the moving fluid separately to the layer, very close to the solid, that was dominated by friction with the solid. This meant that the Navier-Stokes equations (that are used to describe fluid flow and ordinarily do not have an analytical solution) are simplified for this boundary layer and can be quantitatively solved. Although simple, by the 1920s Prandtl’s layer (and consequently the solvable equations) were being used to quantitatively predict the skin friction drag produced by airplanes and airships.

The boundary layer allows us to understand how vortices form behind cylinders or around the corners of buildings. I suspect a mix of the boundary layer, turbulence caused by the coffee going over many of the ridges and the brick like stacking/jamming of the coffee grains would combine to explain the difference in the grind shape around the Kalita Wave and the V60 filters. What this does to the flavour of the coffee and whether better brewing would involve more agitation, I will leave to Kalita Wave coffee lovers to investigate. And when you do, I would love to hear of your results, either here on Facebook or Twitter.

 

Categories
General Home experiments Observations Science history slow Tea

A tense moment for a coffee…

capillary bridge
A bridge formed by water between a cup and a cafetière.

Each and every coffee represents an opportunity to uncover an unusual bit of science. Sometimes the connections between what happens in your cup and the wider world are fairly obvious (e.g. the steam above your coffee and cloud formation), but sometimes the connections seem a little more obscure. On occasion, your observations may lead to philosophical speculations or stories from history. Every coffee is an opportunity to discover something, if you just slow down and ponder enough.

It was with this in mind that I looked at my freshly made French Press coffee a few weeks ago. I had positioned my cup very close to the cafetière such that a small water bridge had formed between the cup and the cafetière (see photo). Such “capillary bridges” have been studied for a couple of centuries and yet there is still more work to do. Caused by the surface tension of the water, understanding the way these bridges form and the shape of the surfaces produced is important for fields such as printing and powder processing. Yet it is only in the last 150 years or so that we have started to understand what surface tension is. Moreover, much of the pioneering work on this subject was done by an amateur scientist who just noticed things (and then designed some very clever experiments to discover more).

Agnes Pockels (1862-1935) is now regarded as a surface science pioneer but in 1891 she was a complete unknown. Although she had wanted to study physics, she was prevented from going to university because she was female. Consequently, all her study of the subject had to be through her brother Friedrich’s books and letters. It is not known what prompted her investigations but from 1880 she had been experimenting with a device to measure the surface tension of water. The device used a sliding weight to measure the force required to pull a 6mm diameter wooden disk off of the surface of a trough of water.¹ The design of this device was so successful that, a few years later, Irvine Langmuir adapted it slightly in order to study the surface of oils. He went on to receive the Nobel Prize for his work in 1932. Yet it is a device that could also be built in your kitchen, exactly as Agnes Pockels did².

reflections, surface tension
The effects of surface tension can be seen in the light reflected from a coffee

Pockels measured the surface tension of water contaminated by oil, alcohol, sugar, wax, soda crystals and salt (amongst other things)¹. She discovered how the surface tension of the water could be affected by pulling the surface or introducing metal objects onto it. She discovered the “compensating flows” that occurred between regions of different surface tension (you can see a similar effect with this soap boat). Yet all of this remained hidden from the wider world because Pockels was unable to publish. Not having access to the contemporary literature about surface tension and moreover unknown, unqualified and female, no journal would look at her work let alone publish it. Nonetheless, she was clearly a brilliant experimentalist and capable physicist.

Things changed when Pockels read a paper by John William Strutt (Lord Rayleigh) in about 1890. Rayleigh was quite the opposite of the unknown Pockels. As well as his work on sound, electricity and magnetism and the (co-) discovery of Argon, Rayleigh is known for his work on understanding why the sky is blue. (Which is another phenomenon that you can see while preparing your coffee if you drink your coffee with milk.) In his paper on surface tension, Rayleigh had come to similar conclusions as Pockels’ work but Pockels had gone further. Unable to publish herself, she instead wrote to Rayleigh, in German, detailing her experimental technique and results. Rayleigh responded by forwarding her letter to the scientific journal Nature together with an introductory paragraph:

“I shall be obliged if you can find space for the accompanying translation of an interesting letter which I have received from a German lady, who with very homely appliances has arrived at valuable results respecting the behaviour of contaminated water surfaces. The earlier part of Miss Pockels’ letter covers nearly the same ground as some of my own recent work, and in the main harmonizes with it. The later sections seem to me very suggestive, raising, if they do not fully answer, many important questions. I hope soon to find opportunity for repeating some of Miss Pockels’ experiments.”¹

Coffee Corona
You may have seen white mists form over the surface of your coffee (seen here by the rainbow effect around the light reflection). But what are they and how do they form? This is still not really known.

Rayleigh’s introduction and Agnes Pockels’ letter were published in Nature on 12 March 1891. The paper enabled Pockels to publish further results in both Science and Nature as well as in other journals. In 1932 she received an honorary doctorate in recognition of her work.

It seems that this coffee-science story has two main messages. The first is to emphasise how much we gain by ensuring everyone has access (and encouragement) to study physics (or indeed whatever subject they are motivated by). What would we have lost if Agnes Pockels had not had the books of her brother and made the decision to write to Rayleigh? But the second message is that Agnes Pockels managed all this, at least initially, by merely noticing what was going on in the liquids around her. Being curious she designed and built a piece of equipment that enabled her to measure what she was intrigued by and by taking a systematic series of data she discovered physics that was unknown to the wider community at the time. So the question is, what do you notice when you look at your coffee? How does it work, what can you discover?

Please do share any interesting physics that you see in (or around) your coffee either here in the comments section below, on Facebook or on Twitter. Tea comments would also be welcome, but whatever you do, slow down and notice it.

 

¹Rayleigh, Nature 1891, 43, 437-439, 12 March 1891 (full text here)

²Reference to the kitchen is here.

Categories
Coffee review Observations Science history

Quantum physics from your (re-usable) cup at Lost Sheep, Canterbury

Coffee in Canterbury, keep cup
Finding the sheep. Lost Sheep coffee in Canterbury. Note the lighting.

I have long been looking forward to trying the Lost Sheep coffee pod in Canterbury. How would the reality compare to the friendly and knowledgable impression they give on social media? Being mostly a take-away outlet, what was their attitude to the disposable coffee cup problem? We had ensured that we had packed our keep-cups when we left London so that we could enjoy a coffee without having to use a disposable cup. Little did we know.

The sheep was visible as we approached the Lost Sheep coffee pod from the direction of the High Street. Adjacent to the pod, people were drinking their coffee while standing at the chip-board standing-bar nearby. In front of us in the queue, another customer was buying what appeared to be his usual coffee in his re-usable cup. The conversation between the customer and barista showing that cafés that help build communities do not have to come in standard formats. ‘Pods’ can work as well as cafés inside buildings (though the Lost Sheep has one of those too over in Ashford). The queue ahead of us enabled us to take more time to study the environment of the Lost Sheep.

Interestingly, a set of ceramic cups were placed above the espresso machine. Although we saw none in use, presumably this means that should you wish to enjoy your coffee at the bars, you can do so, even if you have forgotten your reusable. What a great feature for a take-away coffee place. The friendliness of this café was apparent as I presented my keep-cup for my long black. Commenting on the design of the cup (glass with a cork handling ring, perfect in size for the coffees I mostly drink), we continued to enjoy a short conversation about keep-cups and how nice the size was for the coffee. The coffee was amazingly fruity, a sweet, full bodied brew roasted locally in Whitstable. It was great to be able to enjoy this interesting coffee while wandering as a tourist in my old home-town.

Coffee Canterbury Sheep
Behind the sheep. At least it is easy to spot from all angles.

Before leaving the Sheep though, we did notice the lighting. A yellow hue from the lights immediately above the espresso machine with a whiter, harsher light from the luminescent strip light at the edge of the pod (a dull sunlight surrounding the rest of the outdoor space on this cloudy day). Coals are red hot, the Sun appears more yellow, how does colour vary with temperature? And how does this link to an old story that links quantum physics (very quickly) to your coffee cup.

How things absorb and emit light and electromagnetic radiation has been a subject of study really since white light was split into its different colours and then it was found that there was ‘invisible’ light beyond the blue and far from the red. It was known in the nineteenth century that things (which physicists tend to like to call ‘bodies’ for reasons that become clearer later) that absorbed all the light incident on them re-emitted the light unequally. As they absorbed all the incident light, they could be called a ‘black bodies’. People knew that the radiated light from a black body formed a spectrum that depended upon the temperature of the body. For most things that we encounter on earth, such as the coffee cup, their temperature means that they will emit more strongly in the infra-red, we can feel the heat coming off of them but we can’t see it. But as things get hotter they start to glow ‘red-hot’ and then if we heated them still further, they would glow with different colours.

The stars show this with the colour of the star being an indicator of the temperature of the star. Stars that are very hot shine blue, those that are cooler (but still thousands of degrees Celsius) appear to us as more white. Although these stars are emitting light at all frequencies, they show a characteristic peak in emissions for one frequency. The corresponding “black body spectrum” was very well known in the nineteenth century but the problem was that classical physics just could not explain it. Attempts were made to describe the curve but when it came down to it, if the energy (ie radiation) was described using classical physics, the shape of the curve could not be explained. While classical physics predicted the shape of the curve very well at long wavelengths (reds, infra-reds), there was a failure at shorter wavelengths. And not just a failure, it was a catastrophe: the theory predicted that an infinite amount of energy would be emitted at the low wavelengths. Clearly this is wrong, nothing can emit an infinite amount of energy and so for this reason, the problem was described as the “ultra-violet catastrophe“.

Sun, heat, nuclear fusion
The Sun is our nearest star and source of heat. But what links coffee to the Sun? It turns out a great many things of which this is just one. Image © NSO/AURA/NSF

A solution came when Max Planck changed the assumptions about how energy was emitted or absorbed. Rather than the continuous emission that was expected in classical physics, Planck reasoned that energy was emitted in discrete packets and that, crucially, these “quanta” were dependent on the frequency of the light being emitted. Planck’s formulation allowed for a mathematical description of the curve. Finally the shape of the black body spectrum could be explained, but it came at quite a cost; it came at the expense of classical physics. To use Planck’s formula meant abandoning some aspects of classical physics in favour of a new quantum model and it meant leaving the absolutes of classical mechanics and entering into a new statistical world. This change didn’t come easily even to Planck who had been motivated to study physics by the absolute answers that the theory of thermodynamics seemed to provide. He wrote, regarding his own black body theory:

“… the whole procedure was an act of despair because a theoretical interpretation had to be found at any price, no matter how high that might be”

In some ways, that feeling that you experience while warming your hands on a cup of steaming coffee while basking in the late afternoon sunshine is an intrinsically quantum experience. Neither the infra-red heat of your cup nor the colour spectrum of the sun could be explained using purely classical physics. So while taking time to appreciate the heat of your coffee, perhaps it’s worth remembering that this feeling that you are experiencing comes as a result of the same physics as determines the hot glow of stars and the cold microwave glow of the universe. The coffee heating your hands is indicating that the world is stranger than you may think, a quantum world being revealed to you all the while you sip your coffee.

Lost Sheep coffee is in St George’s Lane, CT1 2SY

 

Categories
General Home experiments Observations Science history

A lawyer, an accountant and and emperor walk into a cafe…

Strata, geology
This is not a resonance in a coffee cup but the concentric circle pattern is similar to a resonance that you could frequently see.

Have you ever noticed concentric rings on the surface of your coffee, forming as the table under the coffee cup vibrates slightly? Perhaps you have seen more complicated patterns. You may have observed, as you have played with your coffee, that some patterns are more stable than others. The one that is formed from concentric circles is fairly easy to form and to see. A more complex one looks like a chequer board, you may perhaps of seen others. These patterns are what are known as ‘resonances’ on the surface of the coffee and they are the consequence of standing waves being set up on the coffee surface. Many people who have gone through an undergraduate physics degree will immediately be reminded of Chladni figures and there is a good reason for this. Ernst Chladni (1756 – 1827) was a pioneer in investigating such resonances, one of the reasons that he has been described as “the father of experimental acoustics”.

And yet Chladni was not a physicist in the way that we now think of the term. In fact, by training he was a lawyer, a consequence of following his father’s rather insistent ‘advice’. Obediently, Chladni had trained in law and had started working as a lawyer in 1782 when his father died. Chladni appears to have taken this event as an opportunity to start to investigate the scientific problems that he was actually interested in and so re-invented himself as an acoustician testing the theories of music developed by people like Bernoulli and Euler¹.

transmission lines, electrical noise
Like strings on a guitar. Resonances on a string can be used to make musical notes.

Did Chladni drink coffee in eighteenth century coffee houses while admiring the resonances in the cup? Sadly what comes down to us in history is not his coffee habit but his experiments with sand covered metal plates secured onto wooden rods. Chladni caused resonances on these plates by rubbing them with a violin bow. By exciting resonances similar to those you can see on the surface of your coffee, Chladni was able to test theories about the sounds made by curved metal surfaces (e.g. bells). Indeed, these experiments became so important to understanding acoustic theory that Chladni started a European tour demonstrating his plates and their relevance to designing musical instruments. It was presumably through one of these tours that he met an Emperor of the time, Napoleon Bonaparte.

But despite this great experimental progress, the mathematics used to understand these resonance patterns, was developed by another physicist with a non-typical career path, Friedrich Bessel (1784-1846). Bessel had trained as an accountant but with the good fortune of timing, he had apprenticed into an exports company. At this time, such companies would have been interested in the problem of longitude and so Bessel gained an opportunity to indulge his interest in astronomy. As a consequence of this work, particularly his work on the orbit of Halley’s comet, Bessel secured a job in an astronomical observatory and it was there that he started the work that would eventually lead us to be able to describe, mathematically, the resonances on the surface of your coffee.

Did Bessel drink coffee? Had he seen Chladni demonstrate his plates? We don’t know the answer to those questions and in many ways it is not relevant because Bessel’s mathematics did not concern such resonances at all. Instead, almost to underline the idea that everything is connected, particularly with physics and coffee, Bessel was working on the problem of how to calculate the gravitational attraction between multiple objects.

Kettle drum at Amoret
The note made by a drum is a function of the size and shape (therefore resonance pattern) of the drum and also the gas filling the drum. Would this drum-table sound the same if banged on Venus as on Earth?

Perhaps you remember from school Newton’s famous description of the gravitational attraction between two bodies as being F = GMm/r² (where F is the force, G the gravitational constant, M and m the masses of the two bodies and r the distance between them). That’s all very good but what if there were three bodies, or four, or…

It was this problem that Bessel was working on and by so doing he solved the problem of Chladni’s patterns. The maths that describes the many body problem also describes the way that these resonances form. Those patterns in your coffee are described by the same maths as allows us to calculate complex gravitational problems.

And so perhaps it is not quite correct to title this post as a lawyer, an accountant and an emperor walk into a café, but it would be fair to say that each time you catch those resonances in your coffee cup, the  influence and interests of these investigators of nature are infused within the brew.

You can find a sketch of Chladni entertaining Bonaparte with his metal plates here.

¹Harmonius Triads, Physicists, musicians and instrument makers in nineteenth century Germany, MIT Press, 2006

 

Categories
General Home experiments Observations Science history slow Sustainability/environmental Tea

Coffee and the world

Welcome to the first post of 2018, Happy New Year! But before embracing 2018, perhaps let’s take a moment to remember those things that we discovered in 2017 that connect your coffee cup (or brewing device) with the physics of what occurs in the wider universe. Here are some of the highlights for me this year, if you want to share your highlight, please comment in the section below.

latte art, flat white art
A properly made latte. But what if you add hot espresso to the milk instead of the other way around?

1) Latte layering

In mid-December a study was published in Nature Communications that explored the complex, but elegant, physics involved in making lattes (ok, not quite by the technique that you would hopefully find in your neighbourhood café but keep with this…). When a hot, low density, liquid (espresso) was poured into a hot higher density liquid (milk) contained within a cold mug, the competition between the density gradients of the liquid (vertical) and the temperature gradient from the cup wall to the liquids (horizontal) produced multiple layers of varying coffee/milk concentration in the cup. Too late for a 2017 Daily Grind article, this looks to be too good an experiment to pass by, hopefully it will appear on the Daily Grind in early 2018.

 

science in a V60
Could this V60 mystery now be solved?

2) Bouncing drops

November 2017 saw research published about what happens when a cold droplet falls onto a hot liquid (think milk and coffee). The temperature difference causes currents to be established within the droplet (and in the main liquid) that in turn create air flows between the droplet and the liquid bath that prevent the droplet from merging with the bath. The research can explain why it is that you can sometimes see raindrops staying as spheres of water on the top of puddles. It may also explain a puzzling phenomenon that I have seen while brewing coffee in a V60.

 

Vortex rings get everywhere.

3) Vortex rings in coffee

June 2017 and it is again about adding milk to coffee (why do I drink coffee black?). When one liquid (such as milk) is dripped into another (such as coffee), it is very likely that you will observe the milk to form “vortex rings”. These rings are related to smoke rings and have, in the past, been proposed as an atomic model. This year however it was suggested that these vortex rings could form as a type of magnetic nanostructure. Mathematically impressive, beautiful, perhaps quite useful and mathematically similar to something you can find in your coffee.

 

bloom on a v60
How do craters form?

4) Crater shapes

April 2017. What happens while brewing a pour over? As you drip water onto a granular bed (or, in coffee terms, ground coffee in a V60 filter), each drop will create a crater. The size and shape of the crater will depend on the density of the granular bed (espresso puck or loose grounds in a filter) and the velocity of the falling drop. Fast frame photography revealed how the shape of the crater changed with time for different scenarios.

 

Coffee bag genuinely home compostable
How it started.
The Roasting House bag before it went into the worm composter.

5) A home experiment

Perhaps not quite in the theme of the other four stories but this is an experiment that you can do at home. Some have proposed compostable coffee cups as a more environmentally conscious alternative to ordinary, disposable, coffee cups. But how “compostable” are compostable cups and compostable packaging? Between May and September 2017, #howlongtocompost looked at how long it took the Natureflex packaging (used by the coffee roasting company Roasting House for their ground coffee) to compost in a worm composting bin. This one worked quite well. Within 17 weeks, it had been eaten by the worms. In comparison, the “completely compostable” take away coffee cup is still in the worm bin (although considerably degraded) 37 weeks after the start of the experiment. If you are interested, you can follow #willitcompost on twitter. Will it finally compost? I’ll leave you to place your bets but you may decide that a link to Brian’s coffee spot guide to re-usable cups will be helpful.

 

What will 2018 bring? Certainly there will be more composting experiments as I have a coffee bean bag from Amoret coffee, 3 different compostable cups and a compostable “glass” to try with the worms. But in terms of the science? We’ll have to wait. Meanwhile, if you have a coffee-science highlight from 2017, please do share it either here in the comments section, on Twitter or on Facebook. Happy New Year to you all.

 

 

 

 

 

Categories
Coffee review Observations Science history

Hidden appearances at HoM

hot chocolate, soya, marsh mallow, HoM
Hot chocolate with marshmallows at HOM, Kings Cross.

In these long dark afternoons in the northern hemisphere, what could be better than a warming mug of lovely coffee in a bright environment? And so it was that we ended up at House of Morocco (HoM) on the Caledonian Road. Alerted by Brian’s Coffee Spot that Pattern Coffee had changed hands and become HoM we headed up to Kings Cross one damp afternoon in December to see how things had changed. Entering HoM is a strange mix of déjà-vu mixed with new. The pattern on the wall next to the window remains, as does the layout of the place. However it is also clear that much has changed since HoM took over.

There are murals and variously coloured cushions dotted around the café. Even in the darkness of the afternoon, the café was bright, but also crowded. We ordered a soya hot chocolate, a long black and a cheesecake and found a seat perched at a small table for two near the door (the only seat left at the time). The coffee, roasted by Terrone Coffee, was nicely balanced for the afternoon. But it seems that the hot chocolate and cheesecake combination were a real hit. The cheesecake was apparently very good (definitely worth a return visit apparently) while the hot chocolate went very quickly!

Inside the café, the windows were steaming up with the warmth of the inside. We over-heard that this was because of the coffee machine rather than any extra heating that had been installed. Does this suggest an alternative energy source? Coffee machine heaters to go with treadmill electricity generators in gyms?

all about pigmentation at HOM
Menu with sugar bowl and glazed tile at HOM, Kings Cross.

Meanwhile, the decoration was demanding my attention. A vividly coloured glazed tile supported a jar of sugar which was propping up a black and white menu. The menu had an illustration reminiscent of henna tattoos while above all of this balanced a peacock feather in a vase. Underneath the peacock feather was a poster advertising the “Phantom of the Opera”. The whole ensemble was suggestive of appearances and how they can be deceptive. The phantom of course wore a mask to disguise his disfigured face. But the peacock? The peacock is hiding something too.

Many of the colours that we see around us such as those making our coffee brown and making the tiles colourful are as a result of energy from the light being absorbed by the atoms in the substance (the coffee or the tile). This type of light absorption (and emission) can be connected with vortices in coffee as was discussed here. However the blues and greens in a peacock feather are different. If you look at the feather under a high powered microscope, you will find that the feathers are not dyed as such, in fact the natural colour of the feathers is quite dull. Made from keratin (as you can find in your fingernails) and melanin (responsible for the brown pigmentation of your skin, eyes and hair), the feathers do not seem blue at all. In fact it is the structure in the feather that is producing the colour rather than any dye that produces the colouration.

It turns out that there is a long history concerning our understanding of the colours of a peacock’s feather. It started with Robert Hooke who, in 1665 described the feathers of both peacocks and ducks and noticed that the colours he saw under an optical microscope were ‘destroyed’ by putting a drop of water on the feather. A little bit later and Isaac Newton was suggesting that the colouration was due to the thickness of the transparent bits of the feather. There’s a link here to coffee. Newton was suggesting that an effect similar to thin film interference (which causes the rainbow colours on the bubbles in a coffee) was causing the colours of the peacock feather.

appearances at HoM
Peacock feather and phantom poster with the top of a mirror. How does structure affect what is seen?

As our understanding developed through the centuries (and the microscopes became more powerful), it became apparent that while thin film interference (and multiple film interference) could cause some animals to appear as if they had certain colours, the peacock, along with some other animals, was a little bit more special. Rather than just being the result of reflection off an interface, the peacock’s feathers showed structure at the nanoscale (1/1000000 of a mm). The keratin and melanin in the feathers were arranged in a square lattice to form what is known as a ‘photonic’ crystal. The way this structure reacted with incoming light meant that only certain wavelengths were reflected from it. Depending on the size of the layering in the feathers, they appeared as blue, green or yellow.

Although a lot more is now understood about the factors, structural and chemical, that lead to colouration in all sorts of creature, be they butterflies or beetles, peacocks or pigeons, there is still more to discover, more to understand. The authors of the paper referenced here wrote

“In this paper, we describe a wide variety of structural colors occurring in nature and attempt to clarify their underlying physics, although many of them are not fully clarified.”

There’s clearly a lot more work to do before we can properly explain these “beautiful microstructures”.  And plenty of time to do so as we sit enjoying well made coffee and hot chocolate in a bright and warming café.

HOM can be found at 82 Caledonian Road, N1 9DN

 

Categories
Coffee Roasters General Home experiments Observations Science history slow Uncategorized

Chemical extraction in a V60

chromatography, paper chromatography, V60
Brewing a coffee, insight into analytical chemistry

Ever considered the connection between your morning brew and a century old technique that, it is fair to say, revolutionised analytical chemistry?

Last week, a new coffee arrived in the post from the Roasting House coffee club, followed shortly by an email with details about that week’s coffee. This is not unusual, the coffee club means that a different coffee arrives every two weeks. What was slightly unusual was the email which started:

“There are some brief tasting notes on the bag of coffee we sent you, but before you go on and read the more detailed description, have a good taste of the coffee yourself….”

The opportunity to do so finally arrived and I prepared a V60. First measuring out the freshly ground beans, rinsing the filter, watching the bloom, then slowly pouring the remaining freshly boiled water onto the grounds, all the while noting the aroma.

Taking this opportunity to slowly prepare (and appreciate) a coffee, I noticed that some of the soluble elements in the coffee climbed the filter paper during the pour. A few hours afterwards, the paper had gained a circular rim of coffee solubles around the top of the paper. Although in many ways quite different, this effect was very reminiscent of the technique of chromatography.

Roast House coffee, tasting chromatography
The coffee in question. What tasting notes would you get if you slowed down and tried this one?

The biggest difference between the behaviour of the V60 filter and “paper chromatography” is that in the former, the bottom of the filter paper is continuously immersed in both the sample (coffee) and the solvent (water). In chromatography on the other hand, a drop of the sample (e.g. coffee or ink) is put onto the filter paper which is then placed in a solvent (e.g. water, ethanol). Different components within the sample travel different amounts up the filter paper depending on how soluble they are in the solvent and how they interact chemically with the filter paper. So different components will travel different distances up the filter paper before they get stuck while the solvent continues to travel up the paper. All else being constant, each component always travels a certain distance relative to the solvent and so this provides a way of separating chemical components ready for further analysis or identification.

Perhaps you remember using chromatography to separate the colours in an ink pen at school? The ink was spotted onto a piece of filter paper and then immersed in water. We watched as it separated into various colours illustrating the number of different dyes that had been used to make up the ink. When used professionally though, the chromatography technique can be used to investigate trace impurities in soil, air, drinking water etc. It has even been used to analyse the components in coffee. From something that can be done in school science, it is an incredibly powerful chemical technique.

What was surprising was that the technique of chromatography was not invented until 1903, while the idea of using paper in chromatography only came about in 1944¹. Those who first used chromatography as a method to identify chemicals (in plants), did so using columns of powder rather than paper. Paper chromatography was invented to investigate the separation of amino acids and specifically was used to understand the composition of the antibiotic tyrocidin¹. Just as the ink in our school experiments separated into different dyes, so the chemicals that they were investigating would separate into different components, different chemicals would stay at different heights on the filter paper.

Since its invention, the technique had been extended to include gas chromatography rather than just liquid and has been developed to be extraordinarily sensitive. It is now possible to analyse chemicals with a mass of just 10^-15 grammes, a quantity which is too small to even easily imagine. Even just a couple of decades after the invention of the technique it could be said:

“Amino acids… could now be separated in microgram amounts and visualised…. (Paper chromatography) would allow one within the space of a week [to do some analysis]… which until then could very well have occupied the three years of a Ph.D….”¹

V60 chromatography chemistry kitchen
A few hours later and the coffee had travelled up the filter paper with the solvent (water).

However, to return to the coffee. Through tasting rather than chemistry, I obtained a toffee aroma, with earthy notes and hints of redcurrant that evolved as the coffee cooled into a sweet toffee taste. The tasting notes further down the email on the other hand said:

“There’s a rich chocolate base, a kind of woody pine taste, sweet summer fruits, even tobacco. Remember, taste it before you judge it! Tobacco notes and woody pine don’t sound particularly appealing and maybe you don’t taste them at all!”

Much more descriptive than my effort. It seems I need to return to my V60 and improve my tasting ‘chromatography’. There are so many ways to slow down and appreciate a good coffee, what do you notice in yours?

A ‘coffee tasting wheel’ can be found here if you, like me, would like to improve your coffee tasting ‘chromatography’.

¹Chapters in the evolution of Chromatography, Ed. John V Hinshaw, Imperial College Press, 2008

Categories
Coffee review Observations Science history

Phlogiston in the Watch House

Watch House coffee Bermondsey
The Watch House in Bermondsey

At the end of Bermondsey St, tucked away in an odd looking building on the corner, is a café known as the Watch House. Stepping inside you are met with a very strange impression: this is far from your normal rectangular room. Instead an octagonal space, complete with Victorian style tiling and wood burning stove greets you. There are about five small tables inside, which were all occupied (some shared) when we arrived late in the lunch hour. So we sat at a table outside, although there was also bench seating on the other side of the door and a lovely park just next door, the old St Mary Magdalen graveyard.

The building itself dates from the time when the “watch house” was the base for a makeshift local constabulary that would monitor the local area ensuring that no body-snatchers were operating in the graveyard next door. The body snatchers used to ‘acquire’ recently buried bodies for use in anatomy classes at the capital’s teaching hospitals. Nowadays, as with many other disused burial grounds in London, the graveyard next door has been transformed into a park. On the other side of the café, a drinking fountain (the gift of a Henry Sterry Esq.) is embedded into the wall. An interesting feature reminding us of the drive to provide drinking water to London’s population both then and now with the newly installed fountains at the nearby Borough Market.

coffee at Watch House
What fantastic colour in this filter.

As I placed my V60 on the table outside, the light shone through it making the coffee appear to glow with a deep red tinge. Temporarily ignoring my normal idea that such transient beauty can’t be captured, I tried to photograph it, an endeavour that predictably failed to capture the full radiance of the cup. Nonetheless, the clear red coffee did not have significant sediment at the bottom of the cup. Perhaps this is not surprising, it was a V60. But nevertheless this lack of sediment has a connection with the water fountains both at the Watch House and at Borough Market and the wood burning stove. You could even make a macabre link to the graveyard next door. But without pursuing that last one too much, the link is Antoine Lavoisier (1743-1794) and the transmutation, or not, of water into earth.

The problem was this: In the early seventeenth century Jon Baptist Van Helmont had planted a 5lb (2.3 kg) willow tree into a pot of soil of mass 200 lb (91 kg)¹. He covered the pot of soil and only allowed rainwater into the tree/pot system for 5 years. At the end of his experiment, the mass of soil was unchanged but the willow tree was now 169 lb 3 oz (76.8 kg). Clearly, the “element” water had transmuted into the “element” earth* and so added to the mass of the tree. A few years later and scientists boiling distilled water (which had of course been purified by previous boiling) noticed that there was always a solid residue left after the water had boiled away². Another piece of evidence for the transmutation of water into earth.

Lavoisier, who became known as the father of modern chemistry, thought differently. He had been interested in obtaining clean, safe drinking water for the inhabitants of Paris and had noticed that when rainwater was repeatedly distilled, the amount of solid residue left after boiling decreased with each distillation. How was this reconcilable with the idea that each time you boiled water part of it became the element earth? But if water wasn’t ‘transmuting’ into earth, what could explain the solid residues observed by the other scientists of his day?

Lavoisier suspected the potash or soda used in making the glass vessels used in the experiments. He thought that this could be dissolving out of the vessels when the water was boiled, leaving what looked like a solid residue at the bottom of the cup². To demonstrate that this could be the case, Lavoisier took a sealed container of water called a ‘Pelican’ (which has two arms to allow the water vapour to cool and drip back down to the base of the unit). He first weighed the water and the vessel, separately and together and then boiled the water in the sealed pelican for 100 days. After 100 days he weighed the container-water system again. The total mass had not changed. However, when they were weighed separately, something odd had happened. The glass vessel (the pelican) had lost some mass while solid salts had appeared in the vessel. Although these salts weighed slightly more than the mass lost by the pelican container, Lavoisier considered the discrepancy within error thereby showing that the ‘transmutation’ observed by other scientists was actually salt dissolving out of the glass vessel.

Lavoisier’s experiments were an important contribution to the development of experimental method as well as a refutation of the old idea of the transmutation of the elements earth-air-fire-water.

Lavoisier, drinking fountain, Bermondsey
The fountain on the side of the Watch House. How had a need for supplying the public with drinking water shaped our scientific thinking?

Which leaves one last connection: the wood stove. Since the dawn of humanity, there has been the question “what is fire?”. By the time of Lavoisier, fire was explained by the idea that matter contained more or less “phlogiston”. Something could catch fire if it contained a large amount of phlogiston, it would not ignite were it to have too little phlogiston³. One observation clearly explained by the phlogiston theory was the observation that a burning candle, covered by a glass bell jar, would extinguish itself. The idea was that the candle (which contained phlogiston) released that phlogiston into the air. If the candle burned within a jar, the air surrounding the candle would became saturated with phlogiston. Once saturated, the air could ‘hold’ no more phlogiston so none could escape the candle wick. This would mean that the flame would go out.

Lavoisier, now recognised as one of the three independent co-discoverers of oxygen, showed that oxygen, not phlogiston, was needed for burning to occur. The question is how did he do it? And a question for you, when you are enjoying your sediment free delicious coffee next to a warming wood fire: how would you?

 

*to be fair to Van Helmont, it is hard to blame him for arriving at this conclusion. It was still a few centuries before photosynthesis was discovered and the idea of the four elements of fire, earth, water and air was still active in his time.

The Watch House is at 199 Bermondsey St, SE1 3UW

¹”Lavoisier in the year one”, Madison Smartt Bell, Atlas Books (2005)

²”Lavoisier”, Jean-Pierre Poirier, University of Pennsylvania Press, (1996)

³”From phlogiston to oxygen”, John Cartwright, Hatfield (2000)

 

Categories
Coffee cup science General Home experiments Observations Science history

Coffee Rings: Cultivating a healthy respect for bacteria

coffee ring, ink jet printing, organic electronics
Why does it form a ring?

It is twenty years since Sidney Nagel and colleagues at the University of Chicago started to work on the “Coffee Ring” problem. When spilled coffee dries, it forms rings rather than blobs of dried coffee. Why does it do that? Why doesn’t it just form into a homogeneous mass of brown dried coffee? Surely someone knew the answer to these questions?

Well, it turns out that until 1997 no one had asked these questions. Did we all assume that someone somewhere knew? A bit like those ubiquitous white mists that form on hot drinks, surely someone knew what they were? (They didn’t, the paper looking at those only came out two years ago and is here). Unlike the white mists though, coffee rings are of enormous technological importance. Many of our electronic devices are now printed with electrically conducting ink. As anyone who still writes with a fountain pen may be aware, it is not just coffee that forms ‘coffee rings’. Ink too can form rings as it dries. This is true whether the ink is from a pen or a specially made electrically conducting ink. We need to know how coffee rings form so that we can know how to stop them forming when we print our latest gadgets. This probably helps to explain why Nagel’s paper suggesting a mechanism for coffee ring formation has been cited thousands (>2000) of times since it was published.

More information on the formation of coffee rings (and some experiments that you can do with them on your work top) can be found here. Instead, for today’s Daily Grind, I’d like to focus on how to avoid the coffee ring effect and the fact that bacteria beat us to it. By many years.

There is a bacteria called Pseudomonas aeruginosa (P. aeruginosa for short) that has been subverting the coffee ring effect in order to survive. Although P. aeruginosa is fairly harmless for healthy individuals, it can affect people with compromised immune systems (such as some patients in hospitals). Often water borne, if P. aeruginosa had not found a way around the coffee ring effect, as the water hosting it dried, it would, like the coffee, be forced into a ring on the edge of the drop. Instead, drying water droplets that contain P. aeruginosa deposit the bacteria uniformly across the drop’s footprint, maximising the bacteria’s survival and, unfortunately for us, infection potential.

The bacteria can do this because they produce a surfactant that they inject into the water surrounding them. A surfactant is any substance that reduces the surface tension of a liquid. Soap is a surfactant and can be used to illustrate what the bacteria are doing (but with coffee). At the core of the bacteria’s survival mechanism is something called the Marangoni effect. This is the liquid flow that is caused by a gradient in surface tension; there is a flow of water from a region of lower surface tension to a region of higher surface tension. If we float a coffee bean on a dish of water and then drop some soap behind it, the bean accelerates away from the dripped drop (see video). The soap lowers the surface tension in the area around it causing a flow of water (that carries the bean) away from the soap drop.

If now you can imagine thousands of bacteria in a liquid drop ejecting tiny amounts of surfactant into the drop, you can hopefully see in your mind’s eye that the water flow in the drying droplet is going to get quite turbulent. Lots of little eddies will form as the water flows from areas of high surface tension to areas of low surface tension. These eddies will carry the bacteria with them counteracting the more linear flow from the top of the droplet to the edges (caused by the evaporation of the droplet) that drives the normal coffee ring formation. Consequently, rather than get carried to the edge of the drop, the bacteria are constantly moved around it and so when the drop finally dries, they will be more uniformly spread over the circle of the drop’s footprint.

Incidentally, the addition of a surfactant is one way that electronics can now be printed so as to avoid coffee ring staining effects. However, it is amusing and somewhat thought provoking to consider that the experimentalist bacteria had discovered this long before us.

Categories
Coffee review Observations Science history Sustainability/environmental Tea

Looking under the surface at Mughead coffee

Mughead Coffee, Coffee in New Cross
Set back from the busy A2, Mughead Coffee offers a space to unwind.

A new café has just opened in New Cross. Mughead Coffee opened in July 2017 and sits fronting the A2, part of an old Roman road connecting London to Dover. The large pedestrianised space outside the café provides plenty of room for a few tables together with some further chairs arranged along the café window. It also means that the cafe is set-back far enough from the road that it is possible to sit outside and enjoy the surroundings. Inside, there were plentiful seats but, sadly equally plentiful numbers of occupants relaxing in this new cafe. Clearly this new coffee place in New Cross is proving popular. And why not! Just down the road from the London Particular, Mughead Coffee serves Square Mile in a friendly atmosphere. It is easy to see this becoming a popular local haunt. The usual array of coffees were on offer together with a filter option but as we arrived shortly after lunch, the cake/edible option appeared a little depleted. The interior of the café is quite light and airy with comfortable chairs at the back and more regular seating towards the front. We ordered a long black and a ginger beer and then adjourned to a table outside to await our drinks.

The tables outside are arranged on a sloping pavement. This is not really a big deal, but did remind me of a comment made by the lecturer who was trying to instil experimental design into us as undergraduates: The only stable table is a three legged one. However there was not much time to reflect on that as very soon both coffee and ginger beer arrived with a glass of ice. The natural light revealed the oils on the surface of the coffee as they moved with convection. Different convection zones moving in the coffee just as air parcels do in the sky to form mackerel skies or hot lava moves to form different rock formations, both on Earth and elsewhere.

coffee and ice in New Cross on a wooden table
Coffee and ice at Mughead Coffee. Note the reflections on the coffee surface.

Once the ginger beer was poured into the glass, the ice cubes floated upwards with just a fraction of them bobbing above the surface, the majority of the ice cube beneath. A glance around our surroundings revealed other hints of sub-surface structures. A drain cover nearby indicated, together with some tiling along the pedestrianised zone, the line of the rain sewer running along the road. A public telephone box had no wires obviously leading from it meaning that all the wiring for the communication had to be subterranean. And a raised flower bed, full of thriving plants, had a little drainage hole right at the bottom in order that heavy rain storms did not drown the plants.

This last feature reminded me of a documentary I’d recently seen concerning climate change. Often we tend to think of climate change as involving things that we can see: the melting of glaciers or the disappearance of sea-ice, or freaky rain storms that cause local flooding. However there is another aspect, a sub-surface aspect, that has perhaps been far more visually alarming than even the break-off of the Larson A, B and C ice shelves. If only we could see it. The problem is that, as it happens below the surface of the sea, few of us see it, it is hidden from view and therefore easily hidden from our conscience. It is the drastic effect that rising sea water temperatures are having on a particularly unusual plant-animal combination, the coral reefs. Coral reefs such as the Great Barrier Reef just off Australia, are animals that exist in a symbiotic relationship with a particular type of algae called zooxanthellae. Although the ‘mouths’ of the coral eat passing zoo plankton at night, during the day, they get other nutrients from the photosynthesis products produced by the zooxanthellae that live within their skeletons. These plants give the corals those amazing colours (as well as food). In return, the coral provides the plant life with shelter (they live within the coral itself) and extra carbon dioxide.

Outside Mughead Coffee New Cross
Indications of a hidden architecture. Can you see the drainage hole at the bottom of the planter at the back of the photo?

As the sea temperature rises, the zooxanthellae become less efficient at photosynthesising and so of less use to the coral. If the temperature stays high, the coral ejects the plant life from its body causing the coral to lose all its colour, it has bleached. What sort of high temperatures are needed? It seems that if the temperature of the water is about 1-2°C above the usual seasonal maximum, the coral are ok for a few weeks. But if the temperature rise is 3-4°C (or higher) above the usual seasonal maximum, the damage can occur in just 2 days¹. Coral bleaching does not necessarily lead to coral death but if the bleaching is sustained vast areas of coral reefs can die and get destroyed, with significant impact to the local ecosystem. As corals host “nearly one-third of the world’s marine fish species…”² this impact will be far reaching and affect the livelihoods of millions of people³.

Although small scale coral bleaching has been documented since 1979¹, the first global scale coral bleaching occurred in 1998. It was 12 years until the next global bleaching event occurred in 2010. Following that, we have just had the third global bleaching event in 2015-16. In the latest episode, it is estimated that 29% of the Great Barrier Reef’s coral died (as in actually died, not just bleached). These temperature increases can be associated with global warming caused by increased greenhouse gases in the atmosphere (for more info click here (opens as pdf) or refer to [4]).

The frequency of these events, together with the fact that there were no global bleaching events prior to 1998 should be a dramatic warning siren calling on us to do something to arrest climate change. But what can be done and is it already too late? Well, it is not yet too late to do something. The plants, thriving in the box in front of Mughead can emphasise to us the importance of maintaining our local environment and by extension our global one. Taking time to slow down and take stock of what is beautiful in our environment, and the habits we need to develop to keep this for future generations, these are things that we can do. If you eat fish, was it caught sustainably? Some fishing methods can kill the coral reefs, check before you eat. This is not going to be hard to do. After all, we already do this with coffee. Many coffee drinkers (and roasters) will check how the coffee is grown and processed for both environmental cost and the conditions experienced by the farmers. Many such small actions can cumulatively build to an effort to stop climate change.

Which brings us, in a sense, back to the surroundings at Mughead Coffee. Sitting down and taking time to enjoy that coffee while appreciating our surroundings, the visible and the hidden, the busy road and the mini-oasis of plants in the planter, may help us to see that connectedness that pushes us to accept our responsibility to our common home. Contemplating the history of the road in front of us, will our planet still be beautiful in another 2000 years? With an offer of “gourmet sandwiches” on the menu (if only we’d got there early enough), there’s plenty of reason to head along to the old road in New Cross and sample the coffee while pondering our own impact on this interesting location.

 

¹ Life and Death of Coral Reefs, Charles Birkeland (Ed), Chapman & Hall, 1997

² Coral Reef Conservation, Ed Isabelle M Côté and John D Reynolds, Cambridge University Press, 2006

³ Chasing Coral, Netflix Documentary, 2017 (see trailer below)

4 Climate and the Oceans, Geoffrey K Vallis, Princeton University Press, 2012

Chasing Coral Trailer: