Categories
General Home experiments Observations Science history Tea

Caustic Coffee

A post that applies equally to tea, just swap the word “tea” for “coffee” throughout!

A cusp caustic in an empty mug of coffee
Have you seen this line?

Look deep into your coffee. Do you see the secrets of the cosmos being revealed? Well, neither do I usually but there is something in your coffee that could be said to have ‘cosmic implications’ and I’m sure it’s something that you’ve seen hundreds of times.

Now, admittedly it is easier to see this effect if you put milk in your coffee. Imagine drinking your (milky) coffee with a strong light source (the Sun, a lightbulb) behind you. You see that curved line of light that meets in a cusp near the centre of the cup? You can see various photos of it on this page. Yes, it is indeed the reflection of the light from the curved mug surface but it is far from just that. It is what prompted a professor at Duke University to say “It’s amazing how what we can see in a coffee cup extends into a mathematical theorem with effects in the cosmos.” To understand why, perhaps it is worth reflecting a bit more on our coffee.

The shape of the curve is called a ‘cusp’  and the bright edge is known as a ‘caustic’. It is fairly easy to play with the angle of the cup and the light so that you can see the first cusp curve but you can go further and create caustics that are the result of multiple reflections. Such multiple reflections can give heart shaped curves or “cardioids” so, in a certain sense adding milk to your coffee is good for (seeing) the heart.

caustic in a cup of tea or coffee
A cusp reflection is just visible in a cup of (soya) milk tea

Caustics were first investigated by Huygens and Tschirnhaus in the late 17th century. Mathematically, the cusp curve is termed an epicycloid, you can draw one by tracing the shape made by a point on the circumference of a circle rotating around a second circle, as this graphic from Wolfram mathematics demonstrates. There is a lot of maths in milky coffee. But just how is it that these curves reveal the “Cosmos in a cup of coffee“? It turns out that once you start to see caustics you start to see them everywhere. Caustics are not just going to be formed on the inside of your coffee mug, they can be formed by light waves getting bent by ripples on the surface of a stream or even by gravity, in a phenomenon known as “gravitational lensing”.  Gravitational lensing is when a massive object, such as a black hole or a galaxy, bends the light travelling past it so that it acts analogously to a lens in optics (but a very big one). It is this last type of caustic that prompted the headline quoted above. In a series of papers published in the Journal of Mathematical Physics, Arlie Petters of Duke University and coworkers calculated how light from distant objects was focussed through gravitational lensing and the effects of caustics. Their predictions (and in particular any exceptions to their predictions) could lead to a new way to search for the elusive dark matter, which is thought to contribute to much of the Universe’s mass. They are now waiting for the Large Synoptic Survey Telescope (LSST) to start mapping the sky in order to test their theories.

multiple caustics from multiple LEDs
Multiple light sources are being reflected in this cup.

Before concluding this discussion of cosmic coffee, it is worth taking another look at the mathematician Tschirnhaus. As well as maths, he was known for his philosophy and his chemistry. In fact, it seems that he was responsible for the invention of European porcelain. As noted elsewhere, it has been argued that it was the ability of Europeans to start making their own porcelain that explained the rapid rise in consumption of tea and coffee during the eighteenth century in Europe. Interestingly, one of the tools that allowed Tschirnhaus to succeed in manufacturing porcelain in Dresden where others elsewhere failed was his use of “burning mirrors” to focus the heat and to achieve higher furnace temperatures than were otherwise available. He was using those caustics that he and others had so thoroughly studied mathematically in order to produce the type of cup in which we most often encounter the easiest caustics. A lovely little ‘elliptical’ story on which to end this Daily Grind.

In order to see the caustics in your coffee, it is necessary that the coffee reflects the light incident on it. Meaning, you need to add milk to your coffee. I knew there had to be a good reason to add milk to coffee at some point. Please do share your photos of caustics in your coffee either here or on Facebook or Twitter.

 

 

Categories
General Home experiments Observations Tea

Bouncing Coffee

floating, bouncing drops
Water droplets ‘floating’ on a bath of water (actually they bounce rather than float).

Perhaps you remember the video about how to ‘float’ coffee droplets on water posted on the Daily Grind a few weeks ago? The video featured an experiment that you could do at home in which droplets of water (or coffee, or even, if you were feeling adventurous, tea) could be made to stay as spherical droplets on the surface of a shallow dish of water for minutes at a time. Of course there were a few tricks: The water had soap added to it (10ml of soap to 100ml of water) and the shallow dish was on a loudspeaker which was playing music at the time. The whole experiment was very pretty. But hopefully as well as appreciating the aesthetics, you were asking ‘how’ and ‘why’? Why does the addition of soap mean that these globules of liquid appear to float on the liquid surface? And is the rumour you have heard about a connection with quantum physics true?

Well it turns out that people have known about these floating droplets for over a hundred years but why they behave as they do is still being investigated. It is another case of cutting-edge science appearing in your coffee cup*. So it’s worth taking a look at what is going on and why we needed to add soap and vibration for the droplets to remain stable on the water surface.

lilies on water, rain on a pond, droplets
When it rains, the rain drops don’t float on the pond

It seems to appeal to common sense and to everyday experience that if we drop a droplet onto a bath of water, the droplet will merge with the water and become part of the bath. After all, when we bring two drops that we have dripped on a table close to each other, at a certain distance between the two drops, they appear to touch and then rapidly merge into one big droplet (try it). And when it rains onto a pond, we don’t see lots of spherical droplets hovering over the surface of the pond! We know that it is the attractive van der Waals forces that bring the two drops together and then the effects of surface tension that minimise the surface area of the drops so that they become one big drop. So how is it that we can get a droplet to remain, as a droplet, on the surface of a bath of water?

How to bounce water droplets on a water surface

It could be said that the answer can be pulled out of thin air: Before the drops can merge, the air that separates them has to escape from the area between the droplet and the water bath. If the droplet can somehow be made to bounce back upwards before the air separating the droplet from the bath becomes thin enough for the two liquids to combine, the air could be made into a cushion to keep pushing the droplet upwards. This is why the experiment needs to be done with a vibrating dish of water, each time the surface vibrates upwards it is providing the drop with an acceleration upwards that overcomes gravity, like a miniature trampoline: The droplet is not floating, it is bouncing.

So why soap? We all know that the addition of soap decreases the surface tension of the water. But that is not why the addition of soap helps to stabilise the drops in this instance. No, soap has another effect and that is to increase the surface viscosity (and surface elasticity) of the water. Think about the air between the droplet and the dish. As the droplet bounces down (ie. the distance between droplet and water becomes a minimum), the air gets squeezed out of the layer between the droplet and the bath. On the other hand, as the droplet reaches its peak height, air will rush into the gap between the drop and the bath. If the liquid is not very viscous (eg. water), as the air rushes in (or gets squeezed out), it will combine with the liquid and form a turbulent layer on the surface of the droplet. If the viscosity is increased, the air cannot ‘entrain’ the liquid as the droplet bounces and so the drop keeps its shape more easily and is more stable. Soap increases the surface viscosity of the droplet and so helps with this effect. However soap also increases the surface elasticity and makes it harder for the air to flow out of the layer separating the drop from the bath. It is because soap does multiple things to the water (or coffee) that more recent studies have focussed on liquids with controllable viscosity but minimal surfactant effects, i.e. silicone oils. It is just that if you want it to work with coffee, it is easier to add the soap to get the experiment to work.

An “un-cut” video of coffee on water shows how tricky it can be to actually get these drops to be stable on the surface of the water.

Which leaves the quantum link. The experiment shown in the videos show single droplets (or droplet patterns) stabilised by vibrations caused by music. If instead of music you use fixed frequencies to excite resonances through the speakers, it is possible to get the droplet to resonate in a controlled way and, at a certain point, it will move. As the droplet moves, it appears to be guided by the vibrations of the liquid underneath the drop, it is a particle guided by a ‘pilot wave’. It turns out that such walking droplets show behaviour reminiscent of the ‘wave particle duality‘ found in quantum physics where particles (such as electrons and other sub-atomic particles) can be described both as particles and as waves. You can find a video describing the similarities between these bouncing droplets and quantum effects here.

 

* Ok, so you may not want to add soap to your coffee to see this effect but actually I first observed it in a milky tea. Adding milk to the coffee/tea would increase its viscosity which makes the observation of the bouncing droplets more likely. The ‘milk’ used in the video was actually soya milk which did not appear to increase the viscosity sufficiently to allow the droplets to bounce on the surface without soap.

Categories
Home experiments Observations slow Tea

Coffee baubles

resonating coffee
Not the best image of a resonating coffee but you hopefully get the idea

Most people, at some point in their lives, must have pushed a take-away coffee cup across a table and watched as patterns form on the liquid surface. Sometimes these patterns seem to stand still, we’d say that they form ‘resonances’. On even rarer occasions, on dragging your cup across the surface, you may have seen coffee droplets jump out of the coffee and then dance on the coffee surface for a couple of seconds as the liquid vibrates.

Today’s Daily Grind investigates these ‘floating droplets’ with an experiment in time for Christmas: Decorate your coffee with coffee baubles.

To make these droplets form on your coffee in a controllable way you will need a few bits of equipment:

  1. A couple of loud-speakers with the woofers exposed
  2. Some sort of liquid soap (washing up liquid, hand soap, soap for hand washing clothes etc)
  3. Some water (or coffee but you will do horrible things to it)
  4. A shallow dish (I used the bottom of an old yoghurt pot)
  5. A “dropper”, a pipette or syringe would be ideal, a straw will probably work.

You can do this completely systematically, in which case you’ll also need a signal generator to provide a fixed frequency output to the speakers (I used “ScorpionZZZ’s Lab, Signal Generator Lite for iPhone). Or you can just go straight to the fun bit which is to make these droplets dance to music. It’s Christmas so it’s entirely up to you!

floating drops, resonances, speakers, kitchen top science
Balance a shallow dish on the woofer of a speaker. A roll of sellotape can be used to couple the vibrations of the speaker to the dish if necessary.

Balance your speakers on a flat surface and put the shallow dish so that it sits in good contact with the woofer. Because my dish was ever so slightly larger than the vibrating bit of the speaker, I ‘coupled’ the speaker to the dish with a roll of sellotape. Mix 10ml of soap with 100ml of water (this does not have to be exact but you may want to investigate just how much/little soap you can get away with). If you are using coffee rather than water, you will need to mix 10ml soap with 100ml coffee.

Pour about half the soapy-water into the dish and then turn the speakers on. If you are using a signal generator, watch what happens as you sweep the frequency from 10-200 Hz. Now, either choose a frequency which shows a nice resonance pattern on the water, or start playing the music through the speakers. Music with a good beat will work well (I watched drops dance to Tiesto, Blondie, and Josh Woodward’s “coffee”).

Drip a drop of the remaining soapy-water onto the resonating surface. A video of my playing with these droplets can be seen above. Although not all the drops will float, it is fairly easy to start to form patterns of flowers or rows of droplets and then it’s worth just playing.  How big a droplet can be made to float without collapsing? How many minutes can you get a drop to last before it sinks? What happens if you combine a drop of black (soapy) coffee with a drop of milky (soapy) coffee?

Have fun, and please do share your videos and photos of your experiments with me on Facebook or Twitter.

Disclaimers & Credits:

No coffee was wasted in the making of this video. A very good coffee from Roasting House was thoroughly enjoyed before the remnants were diluted and mixed with soap.

Inspiration & experimental details taken from Jearl Walker’s great article “The Amateur Scientist” in Scientific American, p. 151 (1978).

 

Categories
General Home experiments Observations Science history Tea Uncategorized

Predicting the weather with a cup of coffee?

What do the bubbles on the surface of your coffee tell you about the weather?

weather, bubbles, coffee, coffee physics, weather prediction, meteorology
There is a lot of physics going on with the bubbles on this coffee, but can they be used to predict the weather?

You have just poured a cup of freshly brewed coffee into your favourite mug and watched as bubbles on the surface collect in the middle of the cup. It occurs to you that it is going to be a good day, but is that because you are enjoying your coffee or because of the position of the bubbles?

There are a large number of sayings about the weather in the English language. Some of the sayings have a basis in fact, for example the famous “red sky at night, shepherd’s delight, red sky in the morning, shepherd’s warning“. Others though seem to verge on the superstitious (“If in autumn cows lie on their right sides the winter will be severe; if on their left sides, it will be mild”), or unlikely (“As August, so the next February”).  In 1869, Richard Inwards published a collection of sayings about the weather. “Weather Lore” has since undergone several new editions and remains in print although Inwards himself died in 1937. Amongst the sayings contained in the book is one about coffee:

When the bubbles of coffee collect in the centre of the cup, expect fair weather. When they adhere to the cup forming a ring, expect rain. If they separate without assuming any fixed position, expect changeable weather.

A quick search on the internet shows that this example of weather lore is still circulated, there is even a ‘theory‘ as to why it should be true. But is it true or is it just an old wives’ tale? Although I have consumed a lot of coffee I have never undertaken enough of a statistical study to find out if there could be an element of truth in this particular saying. The number of bubbles on the surface of the coffee is going to depend, amongst other things, on the type of coffee, the freshness of the roast and the speed at which you poured it. While the position of the bubbles will depend on how you poured the coffee into the mug, the surface tension in the coffee and the temperature. It would appear that there are too many variables to easily do a study and furthermore that the mechanism by which coffee could work as a weather indicator is unclear. It is tempting to write off this particular ‘lore’ as just another superstition but before we do that, it is worth revisiting another old wives tale which involves Kepler, Galileo, the Moon and the tides.

tides, old wives legends, Kepler, Galileo, Lindisfarne, bubbles in coffee
The pilgrim path between Lindisfarne and the mainland that emerges at low tide is marked by sticks. But what causes the tides?

Back in the mid-17th century, Newton’s theory of universal gravitation had not yet been published. It was increasingly clear that the Earth orbited around the Sun and that the Moon orbited around the Earth, but why exactly did they do that? Gilbert’s 1600 work De Magnete (about electricity and magnetism) had revealed what seemed to be an “action at a distance”. Yet the scientific thought of the day, still considerably influenced by Aristotelianism, believed that an object could only exert a force on another object if it was somehow in contact with it. There was no room for the heavenly bodies to exert a force on things that were found on the Earth. Indeed, when Kepler suggested that the Moon somehow influenced the tides on the Earth (as we now know that it does), Galileo reproached him for believing “old wives’ tales”: We should not have to rely on some ‘magical attraction’ between the moon and the water to explain the tides!

The point of this anecdote is not to suggest that a cup of coffee can indeed predict the weather. The point is that sometimes we should be a little bit more circumspect before stating categorically that something is true or false when that statement is based, in reality, purely on what we believe we know about the world. We should always be open to asking questions about what we see in our daily life and how it relates to the world around us. It will of course be hard to do a proper statistical study of whether the bubbles go to the edge or stay in the centre depending on the weather (whilst keeping everything constant). Still, there are a lot of people who drink a lot of coffee and this seems to me to offer a good excuse to drink more, so perhaps you have some comments to make on this? Can a cup of coffee predict the weather? Let me know what you think in the comments section below.

 

Weather legends taken from “Weather Lore”, Richard Inwards, Revised & Edited by EL Hawke, Rider and Company publishers, 1950

Galileo/Kepler anecdote from “History and Philosophy of Science”, LWH Hull, Longmans, Green and Co. 1959

Categories
General Home experiments Observations slow Sustainability/environmental

An opportunity to become a cafe-scientist

coffee, Timberyard, wooden tray
A great place to sit and do some citizen science: Timberyard, Seven Dials has plenty of seats outside.

There are many things to be gained from putting down your smart phone when you enter a café. Firstly, there is the opportunity to fully experience the coffee. The sounds as it is made, the smell, the taste, even the feel of the coffee. Then there is the opportunity for people watching; their behaviour as they order their coffees or have their meetings or try to alleviate boredom while playing with their smartphones. Of course, there is also the opportunity to look at the history of the café and its surroundings, to think about a café-physics review or just slow down and notice things. There’s always something interesting going on.

If you are lucky enough though to be in Athens, Barcelona, Belgrade, Berlin, Copenhagen, London, Manchester, Milan or Rome there is now even more reason to put down that phone while you savour your coffee. By doing so, you could be helping scientists with a few questions that they have about atmospheric pollutants. If you are not in one of those cities, you miss out this time, but you may want to keep reading because if enough people get involved now, perhaps next time the iSPEX-EU project may come near you.

contrail, sunset
What sort of aerosols and pollutants are floating in the atmosphere above your head at this moment?

The question is, what are the atmospheric pollutants that are in the air near where you are now? Perhaps you are in a café on a main road and the answer seems obvious, it is those cars and buses that keep passing by. But there are in fact many forms of atmospheric aerosols or particles and they range in size from a few nanometers to tens of microns (which, in terms of coffee grind is from much smaller than the smallest Turkish coffee to approximately the size of a small particle in an espresso grind). Is it really so clear that where you are, in the centre of that big city, is that polluted? If on the other hand you are on the coast in Barcelona, just how salty is that salty sea air? The iSPEX-EU project allows you to measure it and find out.

These particles of dust, salt and soot etc. can have  an effect on human and animal health, so clearly we want to know more about their distribution and their prevalence. But there are also, more subtle reasons why we may want to know about them. They may have an effect on global warming and they are certainly needed in order for clouds to form, (though as yet we still do not fully understand this process). We need more data about what aerosols are around and where they are to start to know what questions to ask (let alone answer) about health, the climate and cloud formation. Yes, we have satellite measurements and pollution data at specific locations, but what people are missing is that local information. What are you actually breathing? When you look up at the blue sky, what pollutants (or other type of aerosol) are you looking through? Can we get enough data to know how the air quality varies between the cafés of Hackney and those of Hammersmith?

Skylark Wandsworth
Another ideal cafe for iSPEX-EU measurements, great coffee and a lovely outdoor seating area at Skylark cafe, Wandsworth Common

To get this data the scientists involved in iSPEX-EU need people, many people. People who are willing to spend 5 minutes turning their iPhone (sadly it is an iPhone-only project) into a pollution detector. The more people that they can get measuring, the more data that they will be able to obtain. All you need is an app from the App-store and a (free) device that fits over your iPhone camera which you can pick up from somewhere local to you. Then, you just take a seat outside the café on a lovely blue sky day between now and the 15th October, aim your phone at the sky and take a series of photographs which are shared back with the scientists coordinating the project. If you are curious to know how your air quality compares with that in another participating city, you can check the live map to see how the measurements are going across Europe.

The device works by looking at the colour spectrum as well as the polarisation of the light reaching the camera as a function of angle. This information gives tell-tale clues as to the size of the aerosols as well as their prevalence. There is a lot more information on the website of the iSPEX-EU project and so I would recommend that if you do want to know more, you click their link here. In the meantime, why not sign up with iSPEX-EU, take a seat outside in that café and enjoy a great coffee knowing that, as you do so, you are contributing to our understanding of atmospheric science.

If you do decide to participate, please let me know of any great locations that you find, both for the coffee and the measurements, or share your pollution measurements with me in the comments section. I look forward to seeing some great data on the live map.

To get involved with the iSPEX project, you can follow the link here.

 

Categories
General Home experiments

Notes on a cup

Ritzenhoff Mugs
Experimental apparatus

An opportunity for an experiment with a cup of coffee. Sadly though, for the experiment itself, it would probably help if the mug were empty, so there are two choices: Either grab a coffee and drink it so that you have the empty cup next to you, or get an empty cup and wait for your coffee until later. There is though, perhaps a third choice, get two cups, one with coffee in it, one empty, that sounds a much better idea.

Now, get a pen or pencil and start to tap the rim of the cup, make note of the sound that the cup makes as you tap at a point next to the handle, moving around to 45º from the handle, 90º from the handle etc. Perhaps compare the sound of different mugs but, on going around any particular cup, what do you hear? The note that you will hear when you tap the mug just next to the handle, or at 90º intervals from the handle should be lower than the note that you hear at 45º angles to the handle. Why is that?

wobbly bridge, Millennium Bridge
“Couple at St Pauls”, photograph © Artemisworks Photography. The ‘wobbly bridge’ is in the background.

Before answering that question, and to give you some time to think about it, it may be time to consider a (related) anecdote. Back at the turn of the millennium, a new ‘shard of light’ was built across the Thames. The Millennium Bridge takes pedestrians from the Tate Modern on the South bank towards St Paul’s on the North bank (or vice versa). It opened on 10th June 2000 and then closed, two days later, owing to problems that left it labelled the ‘wobbly bridge’. Along with many people, I had been taken in by the newspaper headlines of the time saying that we had built a terrible and wobbly bridge. It wasn’t until I was researching St Katherine’s Docks for the White Mulberries cafe-physics review that I found David Blockley’s book, ‘Bridges, the science and art of the world’s most inspiring structures’ and learned the true story. It turns out that the reason the bridge wobbled was because of a previously unknown phenomenon. Dubbed ‘synchronous lateral excitation’, it is a human crowd response to a platform swaying under their feet. Apparently in response to a swaying platform, people will widen their gait slightly to compensate for the wobble, only this acts to increase the sideways force on the platform itself and so can amplify the wobble. This bit had been known, what had not been appreciated was how the ‘wobble’ would grow if a crowd were present. The reason that the wobbly bridge surprised everyone was that never before had the critical mass of pedestrians been walking on a susceptible bridge. According to Blockley, 156 people walking along a particular section of the (original) Millennium Bridge did not cause a problem, but 166 walking in a group along the bridge caused the wobble to quickly become very appreciable.

hitting Zorro
Poor Zorro being experimented upon.

The solution, of course, was to damp the structure, to add shock absorbers and weights to the bridge so that the oscillation decreased. The cup is behaving similarly. Each time you tap the cup, you are exciting a standing wave around the rim of the mug, this is what is exciting the sound. This vibration has four points of maximum oscillation (called anti-nodes) and four stationary points (nodes) around the mug spaced at equal intervals. If the cup is hit so that the handle (which adds a relative weight to one side of the cup) is at a point of maximum oscillation, the mass that is being moved is greater than if there is a node at the handle so it does not have to move. This change of mass shifts the frequency of the oscillation and so the note is lower than when the handle is at a point of zero movement. For more information on the standing waves in your cup click here.

So it’s not just science in your coffee cup, a world of engineering is mirrored in your brew too.

Bridges – the science and art of the world’s most inspiring structures, by David Blockley was published by Oxford University Press in 2010, it is well worth a read as it is a very accessible and informative guide to bridges as well as being entertaining.

If you notice any engineering in your coffee cup, why not let me know via the comments section below or by contacting me via email.

Categories
Home experiments Observations slow

Patterns in a tea cup

light patterns on the bottom of a tea cup
Looking into my peppermint tea. Dancing filaments of light are just visible

Have I been unfair to tea drinkers? It has been pointed out to me on more than one occasion recently that tea is also a good source of science in a cup. So, last week, I drank a large amount of tea and started gazing into my (peppermint) tea cup. I watched as dancing lines of light played on the bottom of the cup. Never staying in one position for long, the filaments moved around, snaking across the tea cup. You can possibly see them in the picture on the right, although you would get a better view of them if you watched them dance yourself in a cup of freshly made tea. Similar lines can often be seen at the bottom of the swimming pool. Such lines of light must be caused by something in the water (or tea) bending the light from the surface into concentrated patches on the bottom. But are the two effects, though visually similar, caused by the same thing? And, what can this possibly have to do with forensic science and drug dealers?

straw, water, glass
When light travels from one medium to another (e.g. air to water) it gets bent by refraction

When light passes from air into a transparent medium (eg. into tea) it gets ‘bent’, in a process called refraction. This is why a spoon (or straw) put into a glass of water looks bent when viewed from the side (see picture). The amount that the light bends is dependent on the angle at which it hits the tea surface and by the density of the tea. The fact that you have to be able to see the bottom of the cup to see this effect, makes tea ideal for viewing it. (If your coffee is transparent enough to view these dancing lines of light, you may well want to check that you are brewing it correctly).

I’m not an optics person but it strikes me that there are at least two easy ways for these light patterns to form. Firstly, small waves on the surface of the water/tea will cause the light hitting the waves to be refracted by different angles as they go through the water. The patterns that form on the bottom of the pool/cup will therefore move with the waves. It is easy to see how such waves could form in a swimming pool, it is not so easy to imagine them in a tea cup. A second way to form these patterns is if the light is refracted through regions of different density, such as slightly hotter and slightly cooler tea. Such regions will occur in a tea cup because the tea is being cooled at the surface by contact with cool air and so there will be a continuous convection process in the cup. Warm water is less dense than cold water* and so will refract light slightly less than cold water will. Consequently, as the slightly cooler and slightly warmer regions of tea bend the light by slightly different amounts you should see patterns forming on the bottom of the cup as different amounts of light get to the bottom at each point.

So we have two possible causes for the light patterns on the bottom of a tea cup. How could we distinguish between them? Perhaps it would be an idea to get two identical cups, one filled with cold water, one with hot water (or a clear tea such as peppermint). Which shows the dancing filaments? Both of them, neither of them? Another experiment could be to observe the filaments in a cup of hot tea and then wait for the tea to cool. Do the light patterns fade as the tea cools?

tea pot science
Not always coffee. Tea can be interesting too.

The link to forensic science comes from the fact that light passing through transparent substances of different density will be ‘bent’ by different amounts. Imagine a drug dealer has been caught with some illegal substance wrapped in cling film. Although it looks to us like any other piece of cling film, that piece of film has been made in a specific factory at a specific time. This means that the roll of cling film that this piece was taken from will share variations in thickness and density with the cling film wrap. A type of cling film ‘finger print’. The density variation in the cling film can be photographed with a technique called the Schlieren photograph which exploits the fact that the light is refracted by varying amounts as it passes through these varying densities. If the police can get hold of the cling film in the suspected drug dealers home, this too can be imaged. If the ‘finger prints’ (changes in density etc.) of the two samples of cling film match, the suspect may be in significant trouble. The motto of this: Ensure that you have a decoy roll of cling film to hand before wrapping anything or, what is probably much better, spend time contemplating your tea in a café instead.

What do you think causes these patterns? What do your experiments reveal? Comments always welcome, please leave them in the box below.

 

* Between 0-4ºC the density of water decreases with decreasing temperature. For the purposes of this blog article it is assumed that you are drinking normal tea at around 60ºC rather than ice tea.

Categories
Coffee Roasters Home experiments Observations

Coffee bean degassing

coffee, Roast House
Coffee from the Roasting House, one light roasted one dark roasted. They were roasted within an hour of each other.

How long do freshly roasted coffee beans take to  degas? Should you let the beans lose the carbon dioxide inside them for 24h, 72h, one week, more? Do dark roasted beans degas for fewer days than light roasted beans? As readers of Bean Thinking will hopefully know, one of the aims of Bean Thinking is to bring science, and particularly experimental science, onto everybody’s coffee tables. Is there an experiment (or experiments) that you can do to measure the amount, and duration, of degassing with equipment that you will have in your kitchen?

To help me in my coffee bean degassing experiments, I got in contact with the very helpful people at Roasting House. Based in Nottingham (UK) they will deliver freshly roasted beans to you by bicycle if you live in the Nottingham area or, for the rest of us, by Royal Mail. Together with the cycling aspect of their business, they also have a commitment to supporting those people who produce the coffee. It is important I think, not just that coffee tastes good, but that everybody involved in the coffee process (from grower to consumer inclusive) gets a good deal. Lastly, and very importantly for the degassing experiment, Roasting House offer their beans roasted to the degree that you specify. While they helpfully recommend a particular style of roasting for each bean (dark roast for one bean type, a lighter roast for another), they do give you the option of choosing which you would prefer.

They are also very knowledgeable about their coffee. As I was discussing the degassing issue with them, they suggested a coffee (Daterra, Bourbon Yellow) that they thought would degas quite a lot. Not just that, but the coffee concerned would taste great as both a dark and a light roast (I do drink the coffee after all). All in all, this experiment could not have been done without the help and input from Roasting House and I am very grateful to them for their support in my little project. So, onto the experiment.

The Experiment:

water acidification via coffee beans
Red cabbage liquid approx 96h after roasting and then being sealed in a jar with coffee beans. Note the colours.

To discover the time period over which the beans degas, I decided to utilise an effect that (for reasons unconnected to coffee beans) is currently having an alarming environmental effect: the acidification of water by carbon dioxide. Carbon dioxide dissolves in water to form carbonic acid. With the rising atmospheric levels of CO2, this is leading to ocean acidification, which is another factor in the “global weirding” phenomenon. For the degassing experiment however, if the roasted beans are sealed in a jar with some water, appreciable CO2 degassing will lead to the water becoming acidic, something that is easily measurable.

Experiment 1 – Red Cabbage, Do the coffee beans really degas CO2?

red cabbage, acidity, indicator, natural indicator, coffee bean degassing
The colours of the red cabbage liquid on tissue. Control sample is on the left, light roast in the middle, dark roast on the right

An acidity indicator that you may well have in your kitchen is red cabbage. Liquid extracted from red cabbage is initially purple but will turn blue in the presence of an alkali or red if it is exposed to an acid. For the experiment, three (identical) jars were prepared each containing 60 ml of red cabbage indicator and three (identical) shot glasses. Each shot glass contained either 10g of dark roast, 10g of light roast or nothing (as a control). The coffee beans were kept dry and out of the water by placing them in the shot glasses. The jars were closed, sealed with sellotape and then left. On opening the jars, (approximately 96h after roasting) the two that had contained the coffee beans had turned red (indicating acidity) while the control jar remained purple – see pictures. It is a pretty way of showing the acidification of the water by carbon dioxide and confirms that the beans are degassing. To establish the duration of degassing, it would be necessary to refresh the red cabbage liquid and measure for a further period of time.

Experiment 2 – testing the pH more systematically.

I headed off to a pet shop to get a pH indicator used by people who keep fish (Nutrafin Test). As with experiment 1, the coffee (10g) was sealed in jars (with 30 ml of water) together with a control. When the jars were first opened (at the same time as the red cabbage jars), the jars containing the coffee showed really low (acidic) pH values (approx 6.0 – 6.5). The control water was neutral or slightly alkali (approx 7.5). The water in each jar was then emptied, the jar rinsed and the water replaced with 30 ml of fresh water which was then sealed in the jar, again for 48h. The picture below shows the evolution of the pH with time (measured as hours after roasting) for the jars containing both roasts. The jar containing the dark roast showed a reduced acidity by 192h (8 days) after roasting (the test tube in the picture is greener), compared with about 288h (12 days) for the light roast. Even after this amount of time however, the water was still becoming slightly more acidic than the control, indicating that the beans were still degassing a little.

pH testing, coffee bean degassing
Testing the pH of the water exposed to the coffee bean degassing. The light roasted beans are on the top row, the dark roast on the bottom row. The ‘hours’ is the number of hours after roasting. The pH is measured by comparing the colour of the liquid in the tube to the colour chart.

Experiment 3 – using a bubble system to ‘catch’ the CO2

A third experiment to try to ‘catch’ the CO2 degassing from the beans (in an adaptation of this experiment) sadly did not work on either occasion that I tried it. If you try it and get it to work with with equipment that you can find around the house, please let me know via the comments section below.

Conclusions:

The coffee tried here, Daterra, Bourbon Yellow, degassed significantly for 6 days after the roasting date. The time over which the beans degassed, was dependent on the roast type, with the dark roast degassing for less time, consistent with the thoughts expressed here. Degassing certainly continued for many days after the critical ’72’ hours. Even 10 days after roasting, some degassing was still occurring. To be pedantic about things, the gas was not identified in these experiments. However, the acidification of the water in proximity with the coffee beans is consistent with the gas being CO2.

Please do try this at home and send me your results and pictures. Let me know what you find out, whether you use red cabbage or a bubble system that works. One thing that these experiments did not do at all of course was monitor how the beans tasted over a similar time frame to the degassing experiment. Perhaps you have thoughts on this. Please send your comments via the form below, comments are moderated but will (hopefully) be approved pretty quickly after you submit them.

Thanks again to Roasting House for being very efficient about sending me freshly roasted coffee and also to Tyla for helping to independently test the red cabbage experiment.

Categories
Coffee review Home experiments Observations

Sugar castles at Iris and June, Victoria

Iris and June, Victoria, coffee in Victoria
The exterior of Iris and June

This post has been a long time coming. Over the past few months I’ve been popping into Iris&June to get take away coffee now and then and have got quite fond of the friendly service and good coffee. What I have not really had the opportunity to do (until recently) was sit and enjoy a coffee inside. Fortunately that’s now changed and I can add Iris&June to the Daily Grind.

So, how is I+J? Well, it is a 5 minute walk from Victoria train station and a welcome break for good coffee. They serve Ozone based espresso, with a brew bar which features guest roasts (also from Ozone) made with the V60 or Aeropress. There are a good looking selection of cakes on offer, though sadly, on the day that I could sit inside with my drink, they all had nuts in them. Hopefully another time.

Sugar jar, I&J, I+J
A jar of sugar at Iris and June

I took a seat on the cushioned bench near the wall and started to look at what was going on. It is the sort of place that is very good for people watching. My eye though was drawn to what was on my table: a jar of sugar. It is not that I take sugar in my coffee, it is that I was reminded of a tutorial I once had as a student. I cannot remember the exact conversation but it concerned piles of sand. My tutor (a theoretical physicist) had said something along the lines “Ah yes, well, of course, everyone knew the maximum angle that a pile of sand could make before it became unstable and then how it started to collapse…. Until of course someone measured it.” [laughed] “We’d got it entirely wrong.”

This ability to laugh at what we do not know, (or what we assume we do know and then measure it and find out that in fact we do not)  is one of the pleasures of physics. We are trying to understand the world we live in, we have not yet got there. Sometimes it is the smallest things that are not yet understood, such as how and why (dry) sand forms avalanches as it is piled up. Yet these small things can turn out to have big consequences (as was also the case for the understanding of coffee stains). In this case, the experiment had tested the way that a pile of sand collapsed in response to different shaped grains of ‘sand’. It had relevance then (and continues to have relevance now) not only in terms of granular dynamics: how do we predict landslides/avalanches? But also in terms of crucial theoretical models about how these processes behave. Theoretical models that are applied to systems as diverse as knowing how electrical devices (resistors) work to understanding the noise on the luminosity of stars. Realising that we were wrong enabled us to probe the question more deeply and thereby to understand it more.

There are similarities between sugar and sand, but also key differences. Although it was tempting to start building sugar castles in the sugar jars on the tables at Iris and June, I was aware of the impression that I may have made to those who go to I+J to people watch (see above). I will therefore leave it as a home experiment. How steep a sugar castle do you think you can make? And how steep can you in fact make it, what is the role of water in building sand castles?

Please leave any reports of experimental results for how steep you can make a pile of sugar in the comments section below and feel free to send me your sugar-castle pictures.

Iris and June is at No 1 Howick Place, SW1P 1WG

Categories
Home experiments

The hot chocolate effect

hot chocolate effect, Raphas
A ready prepared hot chocolate

This is an effect that reveals how sound travels in liquids. It enables us to understand the milk steaming process involved in making lattes and yet, it can be studied in your kitchen. It has an alternative name, “The instant coffee effect”, but we won’t mention that on this website any further. To study it you will need,

1) a mug (cylindrical is preferable),
2) some hot chocolate powder (no, instant coffee really will not do even if it does work)
3) a teaspoon
4) a wooden chopstick (optional, you can use your knuckle)

Make the hot chocolate as you usually would and stir. Then, remove the spoon and repeatedly tap on the bottom of the mug with the wooden chopstick (you could instead use your knuckle). Over the course of about a minute, you will hear the note made by the chopstick rise (not having a musical ear, I will have to trust that this can be by as much as three octaves).

resonator, mouth organ
The length of the pipes in this mouth organ determine the note heard. Photo © The Trustees of the British Museum

What is happening? Well, just like an organ pipe, the hot chocolate mug acts as a resonator. As the bottom surface of the hot chocolate is fixed in the mug and the top surface is open to the air, the lowest frequency of sound wave that the hot chocolate resonator sustains is a quarter wavelength. The note that you hear depends not just on the wavelength, but also on the speed of sound in the hot chocolate, and it is this last bit that is changing. When you put in the water and stir, you introduce air bubbles into the drink. With time (and with tapping the bottom surface), the air bubbles leave the hot chocolate. The speed of sound in a hot chocolate/air bubble mixture is lower than the speed of sound in hot chocolate without air bubbles. Consequently, the frequency of the note you hear is higher in the hot chocolate without bubbles than in the former case.

Let’s use this to make a prediction about what happens when a barista steams milk ready for a latte. At first, the steam wand introduces air and bubbles into the mixture but it is not yet warming the milk considerably. From above, we expect that the speed of sound will decrease as the bubbles are introduced. This will have the effect of making the ‘note’ that you hear on steaming the milk, lower. At the same time the resonator size is increasing (as the new bubbles push the liquid up the sides of the pitcher). This too will act to decrease the note that is heard as you steam (though the froth will also act to damp the vibration, we’ll neglect this effect for the first approximation). At a certain point, the steam wand will start to heat the milk. The speed of sound increases with the temperature of the milk and so the note will get higher as the milk gets warmer.

So this is my prediction, musically inclined baristas can tell me if there is any truth in this:

1) On initially putting the steam wand into the cold milk, the tone of the note heard as the milk is steamed, will decrease.
2) This decrease will continue for some time until the milk starts to get warm when the note increases again.
3) Towards the end of the process, the note heard on steaming the milk will continue to increase until you stop frothing.
4) It should be possible, by listening to the milk being steamed, to know when the milk is ready for your latte just by listening to it (if you are experienced and always use similar amounts of milk per latte drink).

So, let me know if this is right and, if it is wrong, why not let me know what you think is happening instead. I’d be interested to know your insights into the hot chocolate effect in a milk pitcher.