Micromanaging plastic waste

Thames, South bank, London Eye, plastic pollution, Thames21, PLA
Each year Thames21 and the Port of London Authority remove 200 tonnes of waste from the Thames. How much more gets washed into the sea?

Five items make up 2/3 of all lightweight identifiable waste collected from the Thames each year. These items make their way either through being dropped, sometimes deliberately littered, or through another path, into the river where, without litter picks, they are eventually washed out to sea. Part of the estimated annual ~10m tonnes of plastic waste entering into the oceans, they end in one of the gyres of the oceans, vast expanses of sea covered by floating rubbish.

Only much of this waste doesn’t. Or at least not as much as we think should do and we don’t know why. Despite the fact that there is an estimated 250 000 tonnes of waste floating in places such as the North Pacific Gyre, this is not as much as is expected. In fact, the visible waste makes up only a few percent of the waste that is expected to be there. Where is the rest of the waste, and what does it have to do with physics, or indeed coffee?

One of the ‘top 5’ items found in the Thames (coming in at number 4) is take away cups. This is followed closely by take-away containers. This means that our behaviour on leaving cafes, restaurants (and pubs) is affecting the litter that ends up in the river. And this is without counting the fact that food wrappers and drinks bottles (including water bottles) are two of the other worst offenders. It is not necessarily that people are deliberately throwing the items onto the pavement as they walk (though there is that too of course). The charity Thames21 that organises river-side clear ups and litter picks also thinks that some of the waste is coming as a result of people trying to put items into over-filled bins or so-called “tidy litterers“. But the truth is, they don’t really understand the route that many of these items take before entering the river system.

Discarded litter, can holder, litter
Some litter that finds its way into the oceans is merely discarded like this 6 pack can holder. Reducing this getting into the oceans is helped by fewer people littering, more people picking up what they see discarded and changes to the product itself.

It is a significant problem for us now as many of us are trying to support local restaurants or cafes by ordering take away and even when a place has drink-in space, often it is single-use disposable cups that are used. Part of this is understandable. There is a hygiene concern, even if there are counter-arguments that re-usables are safe to use in these times of Covid-19. But I don’t want to trivialise this concern, partly because people are making very hard decisions about how to keep their businesses going or earn enough to pay the next set of bills. If there is any doubt about the safety, it needs to be considered holistically by those running and working in the businesses and not those like me able to work from home and able to get delivery or pop-in and pop-out (and, in fairness, it is easy to see from a barista’s point of view that handling an untouched single-use cup and giving it in a contactless way to a customer is safer than receiving their re-usable container in whatever state of cleanliness it is presented in).

This part seems a question of balance. Balancing the need for economic support with the concerns of the single-use plastic problem. Do the places that you frequent use recycled (and recyclable) plastics or compostable ones? If the latter, is there a compost bin within the cafe to help with the disposal of these? Ultimately, is your take-away coffee going to help the business or are there other items that you can purchase that don’t require the same amount of packaging.

These are considerations with no easy answers which leads to the second approach that you could take. In non-Covid times, charities such as Thames21 are always looking for volunteers to help with clean ups and to get involved in counting the types of litter that find their way to the rivers. Becoming a ‘citizen scientist’ in this way helps to quantify the amount of waste entering our rivers but it also helps Thames21 and the river authorities to understand how the waste gets there in the first place. Why are our river banks so filthy?

Coot nest, plastic waste, Grand Union Canal, litter, plastic pollution, effect on wildlife
A coot building its nest with twigs and litter, including plastic litter, on the Grand Union Canal in London in 2019.

But then the last question. If we know that so much waste is getting into our river, and we know that this is being replicated around the world, why is so little of it making its way to the gyres? What is happening to it?

This affects, to some extent, what we do about our plastic behaviour – the decisions we ultimately make about whether to have a take-away coffee or whether to buy a disposable or re-usable face mask (or even make one). One of the explanations is that the majority of the plastic is becoming micro plastic (<5mm size pieces) or even nano plastic and so sinking into the seas rather than floating on the surface. These micro plastics are the result of the break-up of larger items by UV and micro organisms at sea and also the direct pollution of micro plastics into the sea by clothes being washed or from cleaning products etc. Indeed, the Thames21 citizen scientists discovered micro plastic pollution at 20 out of 21 sites along the river bank in a recent litter survey. A different explanation is that the plastics that are entering our seas today take years, even decades to reach the gyres which are made up of plastics from the 1970s and similar aged pieces. Both explanations mean that we need to stop the pollution at source, but if it is the former, there is not so much point in cleaning up the gyres by pulling the large litter out – the majority of the plastic that is in the oceans is actually underneath what is visible.

Refill station
Water stations and refill bottle. Many of these have been designed to avoid any contact between your reusable bottle and the tap allowing a safe way of travelling with reusables.

How can we determine what plastic waste goes where? Well, we can increase the modelling of ocean currents to improve our ideas about how waste is transported from source to gyre, but we can also try to have a look from space, from the satellites that are monitoring other aspects of our behaviour on Earth. Now it turns out that it is not easy to see plastic from space because with many of the techniques we would use, such as radar, plastic and water ‘look’ very similar. But one thing that that the satellite data has shown is the fact that there are peculiarly calm regions of sea near the gyres. Calm sea looks different from choppy seas in the same way that the light reflected off your coffee looks different if you are sitting with it calmly or if you are running with it and it is sloshing around the cup. But the connections go a bit further than this. The reason for the calm is because of surfactants on the surface of the seas. These surfactants (like soap) ‘calm’ the waves in much the same way as oil calms the waves. It doesn’t take much surfactant to cover the surface of a large area of water as a consideration of how much oil covers the surface of your coffee can tell you.

The surfactants are produced by microbial activity, the result of small bits of plastic (micro plastics) having been colonised by microbes before it sinks. The calm regions of the sea may therefore be indicating areas of hidden micro plastics and demonstrating the depth of the problem of single use plastic waste.

What does this mean for your take-away coffee, your Deliveroo order or your disposable mask? A recent study suggests that it is imperative that we take a combined approach, both as consumers, and as producers, reducing, reusing, recycling and changing the system. But on a personal level of course, some answers are clearer than others. Having an idea of the size of the problem, and the things that we can do to mitigate or understand it, may help us to navigate this plastic minefield.

Pushing it at Lever and Bloom, Bloomsbury

Lever Bloom coffee

Lever and Bloom under a blue sky.

Does a take-away need to be rushed? A coffee so quick that there is ‘not enough time to prepare a flat white’? Are we always so preoccupied with the distractions of our day that we consume our coffee merely for the pleasant caffeine kick that it provides?

Lever and Bloom in Bloomsbury is a great example of why this does not have to be, indeed should not be the case. Since 2015, Lever and Bloom have been operating out of a cart on Byng Place close to UCL and a number of other research institutes. The character of the surroundings really does affect the space and both times I have been to Lever and Bloom I have either met interesting people in the queue or overheard snippets of intriguing conversation about history I know nothing about.

Coffee Bloomsbury reusable coffee cup

Long black in a keep-cup and telephone box in Byng Place.

It is easy to spot the coffee cart in the corner. Firstly, it is bright red and quite eye catching but secondly because of the queue forming in front of it. Don’t be put off though, the queue moves very quickly so you won’t wait long even if you are in a rush. Queueing however does give you an opportunity to peer into the cart. Space is used extremely efficiently. with each piece of equipment  apparently having its own perfect home. It reminded me of a childhood game of trying to fit in as many objects as possible into a matchbox. A cabinet on the table in front of the cart displays cakes including cinnamon rolls (sadly sold out by the time I arrived in the afternoon). It was also nice to see the number of people ahead of me in the queue who were using re-usable cups.

The lever of the name refers to the (Izzo Pompei) lever espresso machine that is used on the cart. It was fascinating to watch the ground beans being carefully tamped and the lever being pulled to prepare the espresso. Although there is some debate as to the optimum water pressure needed for preparing an espresso, the standard pressure is 9 Bar; water is pushed through the tamped grinds at nine times the atmospheric pressure at sea level. Watching these espressos being prepared reminded me of preparing ceramic samples of an interesting magnetic material a few years ago. We were interested in the electrical properties of a class of materials called manganites. To prepare the materials for measurement we first had to grind the pre-cursor powders (but with a pestle and mortar, no burr grinders) and then, after a couple of further preparatory steps, press them into a pellet ready for firing in the oven. The machine used for pressing the pellets had a lever, not dissimilar to that on the espresso machines and yet, the pressure that we used for the pellets was roughly 1000 Bar. This high pressure was needed so that dense pellets of manganite material would be formed when we heated it in the oven (typically at 1200 ºC). Just as a good espresso depends on the pressure and then the temperature and time of extraction, so the properties of the pellet would be affected by the pressure and then temperature and time of firing in the oven.

Portland Stone fossils

Fossils in Portland Stone. It is astonishing what is revealed when you slow down and notice the buildings around you.

Similar effects affect the rocks of the earth, something that is particularly visible in the area around Lever and Bloom. A geological walking tour around Byng Place, Tottenham Court Road and towards the British Museum illustrates this particularly well. Behind Lever and Bloom, the church of Christ the King is built from Bath Stone. An oolitic limestone, this type of rock is formed of compressed sand and bits of shell. Much as the manganite samples of my study before they were fired in the oven but of a more interesting colour. Heading towards Gower St and the impressive UCL building is made of Portland Stone. Another limestone, this building material is a goldmine for urban fossil explorers. Continuing the walk, on Tottenham Court Road, the Mortimer Arms pub is fronted by quartzite while Swedish Green Marble adorns 90 Tottenham Court Road. Quartzite and Marble are both types of metamorphic rock, formed by pressing together different precursor materials at high pressure and temperature. Other types of marble can be seen on the tour, suggesting the influence of pressure and temperature of formation on the rock structure as well as the type of precursor rock.

It would seem that such a walking tour is perfectly timed for a longer style of coffee, perhaps a latte (in a re-usable cup of course) from such a centrally located place as Lever and Bloom. And of course, assuming you are using a re-usable, there is even more to ponder. The pressure and temperature during the manufacture of the re-usable cup would have affected the properties of the cup (or in my case, glass).

Let me know if you spot any interesting rocks or fossils during your time at Lever and Bloom but whatever you do, I hope that you can enjoy your coffee and then slow down to enjoy it a bit more.

Lever and Bloom is at Byng Place, WC1E 7JJ

Coffee cup recycling

a take away cup

It is recyclable, but not easily so.

That old subject again, the recyclability of take-away coffee cups. But before you groan about our disposable culture, there has recently been some great news, at least as far as the university sector is concerned. Regular readers may know of the Bean Thinking list of Top UK Universities for Coffee Cup Recycling. You may also be aware of just how short that list has been. Now though, there are signs of change. Perhaps because it is the start of the academic year, several universities including Oxford Brookes and the University of Bedfordshire have announced new schemes for recycling their cups with Simply Cups.

Owing to the way the cups are made it is extremely difficult to recycle them; although they are technically recyclable, very few companies have the capabilities. Consequently, the majority of the cups that we use for our take-away are just thrown-away, taking many decades to break down.

compostable, coffee cup, disposable culture

Using compostables can be a step in the right direction.

It is often our universities that do the research showing just how environmentally damaging our disposable culture can be. Nonetheless many university catering departments continue to serve coffee in “disposable” cups without putting in place any scheme to recycle them. Over a year ago I started a list of the UK’s top universities for coffee cup recycling. It would be thought that it should be extremely easy to be listed here. To be listed, all a university has to do is take a responsible attitude to it’s take away coffee cup use. Preferably, they would discourage take-away coffee cup use altogether. As Loughborough University recognises, slowing down, talking with colleagues over a stay-in (washable cup) coffee can be far more productive than scurrying away with your non-degradable cup.

However, often we feel that we don’t have time to sit down for a coffee and need to take-away. At this point, to be listed on the guide, all that a university would have to do is either invest in compostable cups (despite the caveats*, this is at least a step in the right direction) or institute a scheme to collect and recycle their coffee cups (as has been done at the University of Bath, Bedfordshire, Kent, Loughborough, Manchester Metropoliton and  Oxford Brookes University).

As may be apparent from the fact that the universities can be listed within this short article, the current list is woefully short. Even after the recent good news from Oxford Brookes and the University of Bedfordshire. Most universities, including my own are sadly still not on it. So, what can you do if your university is not listed here?

  1. If you think it should be listed but hasn’t been it is very highly likely that I just don’t know about it yet, please let me know by contacting me through email, Twitter or Facebook.
  2. If your university is doing very little to discourage disposable cup use: Write to the catering department and waste management department of your university to let them know your concerns. When writing, be aware of the fact that they have probably considered this problem before and are aware of the issues but have concerns/limitations that have prevented them from implementing a policy. Consumer pressure can help to change their minds but there may be (what appear to them to be) valid reasons that they have not yet done so.
  3. Use a re-usable cup. Even if your university does not charge extra for using a disposable cup/give a discount for using a re-usable (thereby encouraging the use of re-usables), systemic change starts with individuals. Be the start of the change you want to see. You can find a review of various re-usable coffee cups here.
  4. Refuse to buy your stay-in coffee if you are served it in a take-away cup. Good coffee deserves to be enjoyed in appropriate cups and poor coffee should be avoided anyway.

You can find the list of the UK’s top universities for responsible take-away coffee cup use here.


*The word ‘compostable’ does not necessarily mean that it will compost in a home-composting environment. For this situation to be preferable to the ordinary disposable cup, it would be necessary to have some form of industrial composting facility in place.