Categories
Coffee review Coffee Roasters Observations slow Uncategorized

In search of origins

Amaje coffee
Buriso Amaje Coffee from Ethiopia via Amoret Coffee in Notting Hill. The Jimma 74158 and 74160 varietals are selections from coffee grown in the wild.

It was a goat herder named Kaldi, so the story goes, who first noticed the effect of coffee beans on the the energy levels of his goats. After telling the local abbot of his observations, the monks at the nearby monastery realised that this drink could help them stay awake during prayer and so the reputation, and consumption, of coffee spread from Ethiopia and then throughout the world.

While the details may be questionable, there is evidence that the coffee plant originated in Ethiopia. Coffee still grows wild in parts of Ethiopia and the oldest varietals are also to be found there. And so, when I realised that my latest coffee was an Ethiopian Natural of varietal Jimma 74158 and 74160, roasted by Amoret coffee in Notting Hill, I thought, why not do a coffee-physics review rather than a cafe-physics review? For there are always surprising links to physics when you stop to think about them, whether you are in a cafe or sampling a new bag of beans.

This particular coffee was grown by Buriso Amaje in the Bensa District of the Sidama region of Ethiopia. The varietals were selections from the Jimma Research Centre from wild plants that showed resistance to coffee berry disease and were also high yielding. Grown at an altitude of 2050m, the naturally processed coffee came with tasting notes of “Blueberry muffin, white chocolate” and “rose petal” among others. Brewed through a V60, it is immediately clear it is a naturally processed coffee, the complex aroma of a rich natural released with the bloom. Indeed, the bloom was fantastically lively with the grounds rising up with the gas escaping beneath them in a manner reminiscent of bubbling porridge (but much more aromatic). And while I lack the evocative vocabulary of Amoret’s tasting notes, the fruity and sweet notes were obvious, with blueberry a clear descriptive term while I would also go for jasmine and a slight molasses taste. A lovely coffee.

Brewing it again with an Aeropress, the tasting notes were different. We could start to ponder how the brew method affects the flavour profile. But then we could go further, how would this coffee taste if brewed using the Ethiopian coffee ceremony? Which leads to further questions about altogether different origins. Where did this come from and how do our methods of experiencing something emphasise some aspects while reducing others? Ethiopia offers a rich thought current if we consider how things originated because it is not just known for its coffee, Ethiopia is also home to some of the world’s oldest gold mines. Today, one of the larger gold mines in Ethiopia lies just to the North West of where this coffee came from, while a similar distance to the south east is a region rich in tantalum and niobium. We need tantalum for the capacitors used in our electronic devices. In fact, there is most likely tantalum in the device you are using to read this. While niobium is used to strengthen steel and other materials as well as in the superconductors within MRI machines. Where do these materials come from?

The Crab Nebula is what remains of a supernova observed in 1054AD. Explosions like these are the source of elements such as iron. Image courtesy of Bill Schoening/NOAO/AURA/NSF

Within the coffee industry there has been a lot of work done to demonstrate the traceability of the coffee we drink. But we know much less about the elements that form the components of many of the electronic devices that we use every day. And while this leads us into many ethical issues (for example here, here and here), it can also prompt us to consider the question even more fundamentally: where does gold come from? Indeed, where do the elements such as carbon and oxygen that make coffee, ultimately, come from?

The lighter elements, (hydrogen, helium, lithium and some beryllium) are thought to have been made during the Big Bang at the start of our Universe. While elements up to iron, including the carbon that would be found in coffee, have been formed during nuclear fusion reactions within stars (with the more massive stars generating the heavier elements). Elements heavier than iron though cannot be generated through the nuclear fusion reactions within stars and so will have been formed during some form of catastrophic event such as a stellar explosion, a supernova. But there has recently been some discussion about exactly how the elements heavier than iron formed, elements such as the gold, tantalum and niobium mined in Ethiopia.

One theory is that these elements formed in the energies generated when two neutron stars (a type of super-dense and massive star) collide. So when the LIGO detector, detected gravitational waves that were the signature of a neutron star collision, many telescopes were immediately turned to the region of space from which the collision had been detected. What elements were being generated in the aftermath of the collision? Developing a model for the way that the elements formed in such collisions, a group of astronomers concluded that, neutron star collisions could account for practically all of these heavier elements in certain regions of space. But then, a second group of astronomers calculated how long it would take for neutron stars to collide which led to a problem: massive neutron stars take ages to form and don’t collide very often, could they really have happened often enough that we have the elements we see around us now? There is a third possibility, could it be that some of these elements have been formed in a type of supernova explosion that has been postulated but never yet observed? The discussion goes on.

coffee cup Populus
Where did it all come from? Plenty to ponder in the physics of coffee.

The upshot of this is that while we have an idea about the origin of the elements in that they are the result of the violent death of stars, we are a bit unclear about the exact details. Similarly to the story of Kaldi the goat herder and the origins of coffee, we have a good idea but have to fill in the bits that are missing (a slightly bigger problem for the coffee legend). None of this should stop us enjoying our brew though. What could be better than to sip and savour the coffee slowly while pondering the meaning, or origin, of life, the universe and everything? That is surely something that people have done throughout the ages, irrespective of the brew method that we use.

As cafes remain closed, this represents the beginning of a series of coffee-physics reviews. If you find a coffee with a particular physics connection, or are intrigued about what a connection could be, please do share it, either here in the comments section, on Twitter or on Facebook.

Categories
Coffee cup science General Observations Science history Uncategorized

Coffee quakes

ripples on coffee at Rosslyn, the City
From ripples on the surface, to listening to the sound your coffee makes. What links a coffee to an earthquake?

What do you hear when you listen to your coffee? Or a related question, what links your coffee to earthquakes and seismology?

In recent weeks I have been making coffee with milk, not often, but enough to notice something slightly strange. While heating the milk in a small saucepan, I have accidentally tapped the side of the pan while the milk was in it. The tap, perhaps unsurprisingly, produced a ripple on the surface of the milk propagating away from the point of tapping. But what was surprising was that a very short time later, a second ripple was generated, this time from the other side of the pan propagating back towards the original wave.

The first ripple had not yet travelled across the milk surface before the second ripple had been generated and travelled back towards it. Something was causing a vibration on the other side of the pan before the first ripple had had a chance to get there. Was the pan acting like a type of bell which, as I tapped it, started to resonate all around its circumference?

Assuming that the vibration of the tap travels at the speed of sound through the metal of the pan, it would take about 50 μs for the vibration to travel half way around the circumference of the pan (diameter 14cm, with a speed of sound in steel ~ 4500 m/s). But then, if the pan were resonating, the resonance frequency would depend on the speed of sound in the milk filling the pan, which would increase as the milk was warmed. Would we see evidence for this if we video’d tapping the pan as we heated the milk?

coronal hole, Sun
Observing periodic changes to the luminosity of stars can indicate the elements within them. Image credit and copyright NASA/AIA

Rather than watching the liquid within, we could also learn about the interior of a cup of coffee by listening to it. The “hot chocolate effect” is the classic example of this. The effect occurs when hot chocolate powder is added to warm water or milk and stirred. Think about the pitch of a sound made by tapping gently on the base of your mug while you make a cup of hot chocolate. Initially, adding the powder and stirring it will introduce air bubbles into the liquid. As you stop stirring the hot chocolate but continue to tap the base of the cup the air bubbles leave the drink. The cup is acting as a resonator, so the sound that you hear (the resonance of the cup) is proportional to the speed of sound in the liquid in the cup. As the speed of sound in hot water containing lots of air bubbles is lower than the speed of sound in hot water without the air bubbles, the note that you hear increases in pitch as the bubbles leave the drink. You can read more about the hot chocolate effect in an (instant) coffee here.

It is here that we find the first connection between coffee and earthquakes. Seismologists have been listening to the vibrations of the Earth for years in order to learn more about its interior. By observing how, and how fast, waves travel through the earth, we can start to understand not only whether the inside is solid or liquid, but also what the earth is made from. This is similar to learning about the air bubbles in our hot chocolate by listening to the sound of the mug. More recently, the seismologists have shown the effect of the Covid-19 related “lockdowns” on reducing seismic noise. Something that does not have an obvious coffee cup analogy.

But seismology is not just confined to the Earth. Vibrations of a different kind have also been used recently to learn more about the interior of stars, although here it is a mix of seeing and ‘listening’. Generally, when the surface of an object vibrates, it leads to compressions and expansions of the medium within the object. This is the essence of what sound is. But in a star, these compressions and expansions also result in changes to the luminosity of the star. So, by looking carefully at the frequency of the variation in brightness of different stars, it should be possible to work out what is going on inside them. It is a branch of physics now known as “Astroseismology”. Recent astroseismology results from NASA’s Kepler satellite have been used to challenge theories about how stars form and evolve. It had been thought that as a star develops, the outer layers expand while the core gets smaller. The theories proposed that this would result in a certain change to the rotation speed of the core of the star. The astroseismology observations have revealed that, while the gist of the theory seems right, the core rotates between 10 and 100 times slower than the theories would predict. As one astroseismologist said “We hadn’t anticipated that our theory could be so wrong…. For me, finding that problem was the biggest achievement of the field in the last ten years.”.

We now use strain gauges in electronic measuring scales. They were originally invented for an entirely different purpose.

Seismology and astroseismology offer clear links between listening to your coffee cup and earthquakes (or star quakes). But there is one more earthquake related connection to the coffee cup and it could be noticed by any of us who want to improve our home brewing technique.

To brew better coffee, we need to measure the mass of the coffee beans that we are using. Typically we will use a set of electric scales for this. Inside the scales is a device, called a strain gauge, that shows a change in its electrical resistance as a result of the pressure on it (from a mass of coffee for example). The scales translate this change in the electrical resistance to a mass that is shown on the display. One of the inventors of the strain gauge however was not thinking about measuring the mass of coffee at all. His interest was in earthquakes and specifically, how to measure the effect of the stresses induced by earthquakes on elevated water tanks. In order to do that he needed a strain gauge which led to the devices that you can now find in your measuring scales.

Two links between your coffee cup and earthquakes or seismology. Are there more? Do let me know of the connections that you find, either in the comments below or on Twitter or Facebook.