Categories
Coffee cup science Coffee review Science history Tea

Schrodinger’s Katsute (100), Angel

Katsute 100, tea in Islington
It was a sunny day when we visited Katsute100 in Angel, Islington

When Bean Thinking started, it was always going to be about coffee and yet, Katsute 100 is definitely a tea place. Not only that, but the idea was to see how the physics that we use to describe our universe is mirrored by the physics of the coffee and in a cafe, the physics of the every-day. On the other hand, the whole point of Schrodinger’s cat is to demonstrate how aspects of quantum mechanics are absolutely unlike our everyday experience: a cat both (and neither) dead and alive? And yet, without giving too much away, today’s cafe-physics review is absolutely this – a review of a tea house that features the famous thought experiment. How far Bean Thinking has moved!

Katsute 100 is a welcoming, and peaceful, Japanese tea place in Angel. With a full tea menu and some really great desserts, it is definitely a good place to spend half an hour, maybe more, watching the coming and going and exploring the tea. And there is certainly a lot of tea to explore, different tasting notes revealing themselves as the tea cools, the carefully placed tea pot and tray adding to the experience.

The shop itself is fairly narrow, decorated in sympathy with the Georgian age of the shop itself and with a view into a garden at the back. Japanese tea making equipment is displayed (and for sale) on the various wooden cabinets around the shop. My tea had been buttery (exactly as it had been described in the tasting notes) and the Ichigo Daifuku I had had with it was a fascinating exploration of texture. There were some Japanese art works on the wall and it was then that I saw my first one: a cat. Not a real one of course but one of several decorative cats that are, almost hiding, around the shop. The word “Katsute” has nothing to do with cats apparently meaning “once”, but nonetheless, a few cats do pop up here and there. And even where cats don’t pop up, there are drawers in the wooden cupboards that seem much like boxes, is there a cat there in the box? Is it dead, alive, both, neither? What does this even mean? And is it connected to Katsute, “once”, after all?

note the pouring slits on the teapot
Tea pot, tea cup and ichigo daifuku at Katsute 100

Looking carefully at my teapot, three grooves were carved into the spout allowing the tea to flow out. Each stream of complex flow interferes with the neighbouring stream to present an aesthetic of flowing liquid to match the sound and flavour of the tea. And of course it is reminiscent of an experiment that is key to the unfamiliarity of quantum physics: the double slit experiment.

When light (of a single wavelength, such as from a laser) is shone at a sheet with two holes in it, the light that has travelled through shows interference fringes and patterns. Indeed, it is one of the experiments that went to establishing the theory that light was a wave (and not, as Newton among others had thought, a stream of particles). The situation is quite different if you tried to pass particles through two slits, imagine a sieve with two holes and a stream of coffee beans travelling towards it, we’d expect each bean to go through one hole or the other, not both. In classical physics that’s what we would expect too and yet, when sub-atomic particles (such as electrons) were aimed at two slits and made to travel through them they interfered with each other, as if they were not particles but waves. But other experiments had shown conclusively that they were also particles and indeed, when each individually hit the detector it did so as a single spot, as a particle. Particles and waves? What was going on?

cupboards in Katsute 100
A lot of sake and a fair number of drawers. But what is behind each drawer and why is one missing?

In fact it was a result that had been predicted: Louis de Broglie had shown, theoretically in 1923, that all particles should have wave-like properties and simultaneously, that all waves should have particle-like properties. We should expect that under certain circumstances, light, electrons, neutrons etc, even atoms, should behave as particles and under certain other circumstances (such as the double slit experiment) as waves. But there was an important catch. The electron travelling through a double slit will behave as if it is a wave, passing through both slits and interfering with itself to produce the characteristic “diffraction pattern” of a wave but only if we do not try to look at it to see which slit it really passed through. If we try to detect which slit the particle has travelled through, we can indeed find that some of the electrons travel through one slit and some through the other but when we look at the resulting interference pattern it is gone! What we are left with is the (classically expected) pattern of two particles going through two slits exactly as if they had been very small coffee beans. (You can see a video of Jim Al-Khalili explaining this peculiar result here).

What is going on? To a certain extent, this question is part of the reason that quantum mechanics can seem so strange. We can’t really ask what is going on, or rather, if we ask, we cannot expect to get an answer! We can describe what happens and we can make predictions based on the mathematics that we use to describe the processes. Our technology and our understanding of physics has developed hugely because we can describe how things will behave. But we will stumble if we try to understand what is really going on behind these processes. As Feynman said in lectures he gave to physics undergraduates:

“We cannot make the mystery go away by ‘explaining’ how it works. We will just tell you how it works. In telling you how it works we will have told you about the basic peculiarities of all quantum mechanics.”§

And so things remain enigmatic. Questions that appear to show paradoxes such as the problem of Schrodinger’s cat* continue to puzzle and intrigue us. Is the cat dead or alive? Can the cat be both? Is the cat an observer and what role does the observer have in physical measurements? What does this imply for the fabric of reality? And is there a connection back to the name of this cafe, “once”?

You perhaps should not expect to find any answers in Katsute 100, but pondering these things with a good cup of tea may help advance your understanding. It will certainly help advance your mood if you are in need of some peaceful, thoughtful, time out.

Katsute 100 is at 100 Islington High St, N1 8EG

§ Feynman Lectures on Physics Volume III, 1965

*The story of Schrodinger’s cat is that a cat is placed in a box together with a small amount of radioactive source material. The box is then closed and we cannot see inside. The amount of radioactive material is such that in one hour it has a 50:50 chance of decay. If the material decays radioactively, it triggers the release of a vial of poisonous gas which would kill the cat. Our mathematical models of quantum mechanics suggest that, until it is measured, the radioactive material is in a ‘superposition of states’: it has both decayed and not decayed; the cat is both dead and alive. Only when we open the box after an hour and thereby measure the state of the radioactive material does the cat, at that point, ‘collapse’ into a state that is either dead or alive.

Categories
Uncategorized

Lazing Under the Willow Tree, Stoke Newington

Under the Willow Tree, Stoke Newington, Coffee in Stoke Newington, Green Lanes
No name but a friendly cafe. Under the Willow Tree in Stoke Newington

We delayed our visit to Under the Willow Tree by a day because we noticed that the cafe was closed on Monday afternoons owing to “Sing and sign” sessions for the local community. What a brilliant idea and the sort of community engagement that makes a neighbourhood cafe particularly special. Definitely a cafe to visit.

Coffee is by Grumpy Mule while the tea is by Ero’s. There is a good selection of pastries on the counter and food for brunch/lunch on the menu. The only problem was that there was no sign on the frontage of the cafe to tell us that we’d arrived, we guessed based on the postcode and the fact that this was the only place serving this sort of coffee in the area.

The cafe is definitely child-friendly. With a children’s play area at the back and toys on the shelf by the water, there is plenty for kids to do while their parents enjoy some time with a coffee. Although there are also tables away from the play area if you wanted a coffee away from the kids. A table towards the back of the cafe is suspended by rope perhaps making you think of swings, or tree houses, while the rest of the cafe is fairly minimalist, focussing you on the coffee and the play.

It is no bad thing to focus on play and indeed, it could offer a first physics connection, or at least materials science, with this cafe, in the form of the English Willow needed to make cricket bats for Test cricket. The fibres within the wood provide the toughness needed to prevent the wood from splintering as the ball hits the blade.

coffee, Grumpy Mule, coffee in Stoke Newington, Willow Tree
The coffee reminded me of the picture of the Black Hole, but this halo expanded and dispersed more like a stellar dust cloud.

But keeping with the Willow tree, the remarkable thing about it is how it bends down to the water’s edge, providing shade and shelter for all manner of wildlife. There is another type of deciduous tree in a London park that hangs across a footpath, lazing in a manner similar to that of the willow at the water’s edge. And although it is perfectly possible to walk underneath it on part of the path, I find it perhaps more respectful to bow to the tree as I walk underneath. Walking the path at different times of the year, it is noticeable that the amount I need to bow increases as winter moves into spring and summer. The weight of the leaves pulls on the branches pulling them down.

As the tree has horizontal branches hanging over the path, it is not a simple case of Hooke’s law (where the amount the tree stretches down is directly proportional to the gravitational force of the leaves acting on the branches). But nonetheless, it does give you an indication of the collective mass of the leaves.

The fact that the tree dips down towards the path when it has leaves and moves up away from the path each winter, implies that the tree branches are acting within the elastic limit. That is, that the response of the branch to a load is still reversible. If the stress becomes too much, the extension of the tree will become plastic rather than elastic and the branches would not return to their original position. The elastic limit will vary from wood type to wood type and with different materials. Sometimes we would want elasticity and so we’ll choose one wood type, sometimes rigidity and so another. One reason that willow is a good wood for cricket bats is also this elasticity: the elasticity of the wood as the ball hits it being determined by small pockets of air in the bat.

Tree, bowing tree, effect of leaves on branch bending
This tree bends over the path a bit more in summer than it does in winter. How much do leaves weigh?

There is a similar balance that may occur in your coffee cup if you enjoy a cappuccino. The difference between a pourable foam and one that stands ‘peak like’ on the cup. The ability of the barista to pour and draw the latte art requires a foam that is fairly stiff but still pourable. This is quantified by measurement of the “yield stress” of the froth. The yield stress is the minimum shear stress needed for a liquid or foam to start to flow. So to make latte art, you would need a foam that is stiff enough to hold the design, that is, it has lots of little bubbles that make the foam more firm. But at the same time that the foam is not so stiff that it does not pour (so you need to ensure that you have a lot of liquid milk content within the foam). The yield stress increases as the foam drains and so a good, pourable foam can be achieved by forming lots of smaller bubbles (thinner channels between the bubbles = slower drainage) and pouring it fairly quickly after foaming. But if you wanted to make 3D art of the form in the photo, you would want foam of a different stiffness, a different type of elasticity. You would probably want a drier foam.

In a sense, it is interesting to note that much that determines the response of a substance is about the voids within it rather than purely the material it is made from. Perhaps there is an analogy back to the cafe there: much that makes a coffee shop is the atmosphere created by the cafe rather than purely the coffee and pastries that are stocked. Or maybe that’s one step too far, and we need to go back to ponder and play Under the Willow tree while we enjoy our coffee, foamy or not.

Under the Willow Tree is at 114 Green Lanes, N16 9EH

3D hot chocolate art on an iced chocolate, Mace, Mace KL, dogs in a chocolate
A key to good latte art is understanding good foam. This foam would require different properties to the swans and tulips you may also see in your cup.
Categories
Uncategorized

The interdependence of science and (latte?) art

latte art, hot chocolate art, soya art, albedo, science and art mixing
The difference in contrast between the art on a cafe latte and a hot chocolate is revealing of a lot more than just a tulip.

In Paradiso, Canto II, Dante asks Beatrice about the Moon: “what are the dark marks on this planet’s body that there below, on earth, have made men tell the tale of Cain?”*

On Earth below, it is perhaps the brightness of the milk in the latte art that we notice in our coffee. But it is in fact precisely the contrast that we notice, both on the Moon and in our coffee.

What causes this contrast in the coffee and how does it link back to the Moon? Watching videos of, or if you are lucky to be close enough, baristas making latte art, you may be struck by the skill of the barista to form the milk into complex patterns and art. Swans, tulips and other designs appear on the surface of the drink with seemingly simple oscillations of the hand. And yet, if you’ve ever thought about attempting this art, you will appreciate how hard it is to design this contrast. How does the first pour of the milk lead to a significant uptake of the coffee (and hence a brown colouring), while the second part of the pour is dominated only by the milk and hence the shapes appear?

It must be partly a turbulence effect. The initial milk pour is from a significant height which would churn up the coffee meaning that the suspended particles in the coffee then get caught in the spaces between the bubbles in the milk’s microfoam. The second part of the pour is from a lower height which leads to a reduced mixing between the two liquids.

Brew&Bread, latte art Sun, KL latte art
Complicated patterns are revealed by the difference in colour between the coffee and the pattern.

Yet this is only part of the story. Another perspective on it could be to consider the ‘albedo’ of the drink. The albedo is a measure of how reflective a surface is, so highly reflective surfaces (milk bubbles, ice sheets) have a higher albedo and less reflective surfaces (the coffee liquid, the earth’s surface) have a lower albedo. Part of the visibility of the latte art comes from this difference in reflectivity between the pattern part and the base part of the coffee.

In Earth science this has consequences for climate change: if the ice (high albedo, highly reflective) melts and reveals earth or sea (lower reflectivity, lower albedo), more sunlight is absorbed by the Earth and consequently you get local heating and locally accelerated ice melting. This may have consequences more globally in terms of climate change.

For Dante, it explained the colouration of the Moon. As his guide Beatrice explained to him: different parts of the Moon shone differently depending on their composition**.

Another example of latte art. Science meets art meets the skill of the person producing it.

Which takes us to another connection between science and art. It is recognised that, in European science history at least, Galileo first realised that the ‘dark marks’ on the Moon’s surface indicated that there were mountains and craters on the Moon. He was able to do this because he saw the Moon through a telescope and deduced that the patches were shadows. But when we think about this, it can’t be the whole story. While a telescope magnifies a distant object we still see, effectively, a 2D surface. We see the mountains on the Moon in the shadows because we know they are there. But how did Galileo know? Indeed, another astronomer at the same time was looking at the Moon through a telescope and could deduce only “strange spottedness”. What was the difference between Galileo and Thomas Harriot that allowed the former to see what the latter could not?

It has been suggested that it was Galileo’s artistic training that meant that he recognised the shades of light and dark as shadowsª. His practise at chiaroscuro drawing meant that he knew how to render depth using light and darkness in 2D images. When he saw the Moon, he could recognise the mountains. Another scientist, not familiar with how to render depth in painting, may instead see latte art on the Moon.

There are many ways in which our different backgrounds benefit each other and in which it benefits us to work as teams rather than individuals. There remain some though where the right combination of knowledge of both art and science combined with a particular skill at rendering them, can result in brilliant coffees, or astonishing discoveries, through connecting dots that otherwise could not be seen.

*The Divine Comedy, Dante Alighieri, Paradiso, Canto II. It is interesting here that Dante uses the word “planet” for the Moon, something that we would not do now. In a way it emphasises how our descriptive language changes with time and therefore how there may still be hope for Pluto’s rehabilitation.

** It is interesting here though that Beatrice’s answer to Dante is given to him only after she has convinced him through two experiments that his own explanation for the patches of the Moon was wrong.

ª Styles of Knowing, Chunglin Kwa, Pittsburgh Press, 2011

Categories
Uncategorized

Journeying with coffee

Always plenty to notice while brewing coffee

A short while back while preparing a V60 and watching the coffee level slowly rise to “4 cups” (just about what is needed in the morning for one person I think), I started wondering about rain gauges and how we measure the rainfall. While the first rain gauge was recorded in India in the 4th Century BCE, their design was still being optimised well into the 20th Century. We clearly need to know and agree how to measure rainfall, not just for agricultural reasons, but also for our understanding of the climate. But, more fundamentally, being able to measure quantities precisely and accurately, as well as being able to agree on what we measure seem to be fundamental to any advancements in science. We are perhaps struck by the number of people who have contributed to our knowledge of the world, either directly or indeed indirectly through getting it ‘wrong’. How many times have wrong ideas contributed to an advance in, what we consider at the moment to be, the right ideas?

And then there is the kettle that you may have boiled to prepare the coffee. Hidden by familiarity, the bimetallic switch that ensures that the kettle turns off as the water boils is a fairly recent invention. While the development of our understanding of the perfect brewing temperature for coffee is a mixture of the work of the coffee professionals and the development of the thermometer, itself a journey into science and philosophy.

kettle, V60, spout, pourover, v60 preparation
An over-looked item? It can be instructive to consider how many people have worked to optimise this ‘ordinary’ kitchen object.

Indeed, when we consider the number of people who have contributed to our ability to enjoy our morning coffee it is striking. From the roaster to the farmer, the trader to the inventor: pausing to consider these things may perhaps emphasise to us our dependence on (and growth in) society rather than our individuality.  But then, if we extend our thoughts to the insects and agriculture that enable the coffee plants to thrive, we may come to an awareness of our dependence on the planet; a recognition that “we are profoundly united with every creature….”¹ Does this awareness have an influence on how we behave in and as a society?

In “Styles of Knowing”, Chunglin Kwa argued that just as the forms and styles of painting are responses to the social circumstances, so are styles of knowing². He argued that:

Earth from space, South America, coffee
How do our attitudes affect the science we do, and our perception of the coffee we drink?
The Blue Marble, Credit, NASA: Image created by Reto Stockli with the help of Alan Nelson, under the leadership of Fritz Hasler

“[The humanists] strong emphasis on the vita activa [rather than the vita contemplativa] probably contributed to a scientific mentality aimed at sweeping aside obstacles, making decisions, and then taking action, rather than focussing on consensus, like the medieval scholastics. For humanists, it was the will that mattered.”

It seems that in our society as we encounter ever more distractions, there are always more ways for us to believe that we are busy and therefore useful. Does our embracing of this ‘busy life’ contribute to some of the issues that we define as problems? Do we gain control over some of the issues by taking responsibility for parts of them rather than avoiding them? What would happen if we stopped to contemplate our world, maybe just for 30 minutes each day? We could even do it while we journey into the world revealed by our coffee mug. Would it affect the way that we do science, think about society or drink our coffee?

There is a great deal of depth in a cup of coffee. Four cups is not enough. Do let me know where your mind wanders.

¹Laudato Si’, Pope Francis, 2015

²Styles of Knowing: a new history of science from ancient times other present, Chunglin Kwa, University of Pittsburgh Press, 2011