experiments you can do at home

Latte Art

Latte art scutoid tulip
The physics of bubbles. What links latte art to the shape of cells as an embryo develops?

An odd one out competition: which of the following is not a type of latte art? Tulip, heart, swan or scutoid? You may well ask, “what on earth is a scutoid?” and so identify this as the odd one out and, to some extent you would be right. Scutoids are not a type of latte art. But I would wager that you can still occasionally see them in your coffee.

Twitter can be a great thing and I was recently alerted there to a New York Times article about Karen Uhlenbeck by @Bob_Mat_Phys. Uhlenbeck is a mathematician at the University of Texas who has just won the Abel Prize in mathematics for her work on the maths of bubbles. The article was fascinating in itself but also mentioned in the article was the fact that there may be, on occasion, a connection between a cup of coffee and the cell structures seen in foetal development. And while I’m very well aware of the extraordinary number of connections that can be made between coffee and the science of the everyday world, I’ll admit, that one surprised me.

Metal jug and transparent glass
More bubbles in your coffee. But what determines their shape? And what shape are they?

By this point you may be unsurprised to hear that the connection is made via the scutoids, but what are they? A new type of shape, they were first described in a Nature Communications article about the development of cells as organisms such as fruit flies grew. Scutoids formed as the embryonic cells grew to form tubes or egg shapes. On one surface of the tube the cell was contacting a different number of cells to that which it contacted on the other surface (so perhaps the cell looked like a pentagon on the top and a hexagon on the bottom). In order for the cell to do this, it formed a further triangular face along one side of the cell and it is this cellular shape that is the scutoid.

Where is the connection with a coffee? Well, the amazing thing is that this shape can be the result of the physics that determines the shape of bubbles, in this case when they are confined between two curved surfaces, such as two cylinders. The shape of a bubble is the result of the minimisation of the surface energy of the bubble. So, in free space, the bubble will be spherical but somehow squash bubbles into a box and you can form a cube shaped bubble in the middle of the box. The shapes that form are the result of the minimum surface energy of the bubble surface. Now, if we return to the curved surfaces and the scutoids. The idea is that if there is a single layer of bubbles between two curved surfaces and that these surfaces are then moved away from each other, the bubbles will first resemble prisms and then, as the surfaces are stretched further, some bubbles will form a prism shape but with a triangular surface at one of the bounding walls: a scutoid.

latte art by Mace, Eiffel Tower and hot air balloon
It is astonishing what you can see in a coffee when you look closely enough.

The paper that showed this (published in Philosophical Transactions but you can read the full version here) combined mathematical modelling of the minimisation of surface energy with experiments involving two cylinders and some soap suds. They then photographed the resultant bubble structures. The results suggest that the minimisation of energy (ie. the physics of the bubble shape) could be a first approximation for explaining the cell structures that form in foetal development. But can you see them in your coffee?

You would need a coffee mug or French press and a smaller cylinder that fits neatly inside it. You would then need to form a foam somehow. Soap suds are obvious, some form of milk texturing would be more interesting. You can then look closely and see, can you in fact see scutoids in your latte art?

Exploring the sound of coffee

coffee at Watch House

We’re used to thinking about the aroma of coffee and how it looks, tastes, even how it feels, but what about how it sounds?

How much attention do you pay to your brewing coffee? You know the aroma, how the coffee blooms, you anticipate the taste and feel the warmth of the steam rising off the brew. But what about the sound? Admittedly this depends on your brew method, but what about the sounds as you filled the kettle or prepared a pour over brew? It turns out that the sound of dripping water was the subject of a recent paper in Scientific Reports.

Perhaps take time to watch a tap dripping into a bowl of water. Or maybe use this as an excuse to make another coffee by drip brewing. Each drop falling onto the water (or coffee) below first deforms the water’s surface then, as far as we can see, rebounds up with a splash of a returning drop or droplets. The phenomenon of what causes the characteristic sound of the drip has been investigated for over 100 years but in 1959 it was established using high speed photography that there were four key phases to any drip sound. First, the drop fell on the liquid, then a cavity formed just under the water surface and an air bubble formed just under that. Finally the water surface recoiled leading to a jet of droplets returning from the surface. It has been thought that the sound, that ‘plink’ of the dripping tap, was caused by that trapped air bubble expanding and contracting as it moved through the water under the water’s surface¹. But this has now been confirmed, along with some other interesting, coffee related, observations using ultrafast video recording (30 000 fps for most of the work, 75 000 fps for some of the extra details).

lilies on water, rain on a pond, droplets

Like the sound of falling rain? What causes the dripping sound of a tap?

The authors of this recent paper describe what must have been a fun experiment to do, dripping water into a tank below. You can see some of the videos of the droplet entering the water by scrolling down to the “supplementary information” in the paper. Two microphones (one above, one below the water surface) recorded the sound waves coming from the dripping ‘tap’ simultaneously with the video recording so as to match the timing of the sound with what was happening in the video. The microphone above the water surface largely recorded the same sound waveform as the microphone under the water with one crucial exception. When the authors lined the tank with MDF wood, the underwater sound was ‘damped’ quite quickly, in comparison the bare tank amplified the sound and so the sound wave took much longer to decay. Above the surface however, it didn’t matter whether the tank was lined or not, the sound signal remained the same. This may sound somewhat insignificant, but it means that it cannot be the sound created by the wobbly bubble itself merely propagating through the surface of the water. If this were the case, the microphone above the water surface should show the same signal as the microphone under the water’s surface. Instead the authors suggest that the oscillating bubble causes the surface of the water immediately above it to vibrate (in the bit that is depressed owing to the droplet having fallen into it) and it is this that we hear above the water surface.

science in a V60

Droplets on the surface of a brewing V60 may also form owing to a temperature difference between the dripping drops of coffee and the coffee ‘bath’ underneath.

It is a beautiful set of experiments but how can it link to coffee (apart from with the dripping)? It is in the way that it gives us the chance to experience our coffee with experiments involving more of our senses than just smell, touch and taste. Firstly, the study emphasises the connection between the drop’s diameter and speed to the sound of the drip (the best sounds are for drops between 1mm and 5mm diameter). This suggests that by changing the brewing parameters (whether you prepare your V60 in a jug or a mug or change the filter paper to a metal kone for example), you may hear a change in the sound of the drips. Do you? Secondly, it has been suggested that the sound that is formed is dependent on the temperature difference between the dripping drop and the water bath underneath. A temperature difference between drop and bath would also explain an odd phenomenon I noticed in the V60 a while back. Do you notice a difference in the sound of the brewing coffee when you prepare cold brew pour over as opposed to a standard breakfast brew? Lastly, the authors of this study found that they could suppress the sound of the plink by reducing the surface tension of the water bath that they were dripping water into. In their case they added washing up detergent to the bath. This seems an awful waste of coffee but is it possible that something intrinsic to our coffee brew could do the same thing? Oil will also change the effective surface tension of the water and different coffees (and different roast strengths) change the oil content of the brewed coffee. Have you noticed any change in the sound of the drips of the coffee depending on how dark a roast coffee you use?

It may not make ground-breaking science but it does offer us an opportunity to pay even more attention to our coffee. Does the sound of your coffee reveal the beauty of the physics at work just under its surface?

¹ Some history of the investigation into the dripping sound as well as the experiments can be found in: Phillips et al., “The sound produced by a dripping tap is driven by resonant oscillation of an entrapped air bubble”, Scientific Reports, 8, 9515 (2018)

Coffee Rings: Cultivating a healthy respect for bacteria

coffee ring, ink jet printing, organic electronics

Why does it form a ring?

It is twenty years since Sidney Nagel and colleagues at the University of Chicago started to work on the “Coffee Ring” problem. When spilled coffee dries, it forms rings rather than blobs of dried coffee. Why does it do that? Why doesn’t it just form into a homogeneous mass of brown dried coffee? Surely someone knew the answer to these questions?

Well, it turns out that until 1997 no one had asked these questions. Did we all assume that someone somewhere knew? A bit like those ubiquitous white mists that form on hot drinks, surely someone knew what they were? (They didn’t, the paper looking at those only came out two years ago and is here). Unlike the white mists though, coffee rings are of enormous technological importance. Many of our electronic devices are now printed with electrically conducting ink. As anyone who still writes with a fountain pen may be aware, it is not just coffee that forms ‘coffee rings’. Ink too can form rings as it dries. This is true whether the ink is from a pen or a specially made electrically conducting ink. We need to know how coffee rings form so that we can know how to stop them forming when we print our latest gadgets. This probably helps to explain why Nagel’s paper suggesting a mechanism for coffee ring formation has been cited thousands (>2000) of times since it was published.

More information on the formation of coffee rings (and some experiments that you can do with them on your work top) can be found here. Instead, for today’s Daily Grind, I’d like to focus on how to avoid the coffee ring effect and the fact that bacteria beat us to it. By many years.

There is a bacteria called Pseudomonas aeruginosa (P. aeruginosa for short) that has been subverting the coffee ring effect in order to survive. Although P. aeruginosa is fairly harmless for healthy individuals, it can affect people with compromised immune systems (such as some patients in hospitals). Often water borne, if P. aeruginosa had not found a way around the coffee ring effect, as the water hosting it dried, it would, like the coffee, be forced into a ring on the edge of the drop. Instead, drying water droplets that contain P. aeruginosa deposit the bacteria uniformly across the drop’s footprint, maximising the bacteria’s survival and, unfortunately for us, infection potential.

The bacteria can do this because they produce a surfactant that they inject into the water surrounding them. A surfactant is any substance that reduces the surface tension of a liquid. Soap is a surfactant and can be used to illustrate what the bacteria are doing (but with coffee). At the core of the bacteria’s survival mechanism is something called the Marangoni effect. This is the liquid flow that is caused by a gradient in surface tension; there is a flow of water from a region of lower surface tension to a region of higher surface tension. If we float a coffee bean on a dish of water and then drop some soap behind it, the bean accelerates away from the dripped drop (see video). The soap lowers the surface tension in the area around it causing a flow of water (that carries the bean) away from the soap drop.

If now you can imagine thousands of bacteria in a liquid drop ejecting tiny amounts of surfactant into the drop, you can hopefully see in your mind’s eye that the water flow in the drying droplet is going to get quite turbulent. Lots of little eddies will form as the water flows from areas of high surface tension to areas of low surface tension. These eddies will carry the bacteria with them counteracting the more linear flow from the top of the droplet to the edges (caused by the evaporation of the droplet) that drives the normal coffee ring formation. Consequently, rather than get carried to the edge of the drop, the bacteria are constantly moved around it and so when the drop finally dries, they will be more uniformly spread over the circle of the drop’s footprint.

Incidentally, the addition of a surfactant is one way that electronics can now be printed so as to avoid coffee ring staining effects. However, it is amusing and somewhat thought provoking to consider that the experimentalist bacteria had discovered this long before us.

The impact of water on coffee

lilies on water, rain on a pond, droplets

What is the crater shape produced by falling droplets of water on freshly ground coffee?

Recently there has been considerable discussion about the impact of water on the taste of your coffee. Although this is interesting not only from a chemistry perspective, but also an experimental design and an environmental one, Bean Thinking is probably not the best place to explore such effects of chemistry on coffee taste. If you are interested, there is a recent article about it in Caffeine Magazine, click here. Instead, on Bean Thinking, the idea would be to go a little more fundamental and ask instead what is the impact of water on coffee? What effect does dripping water have on the craters produced in freshly roasted coffee grinds?

You may have noticed craters produced by rain drops on sand or paused while preparing your drip brew to think about the different ways that water percolates through a filter compared to an espresso puck. But have you stopped to consider what determines the shape of the crater that is produced as a falling droplet impacts a loose bed of granular material (such as coffee). Perhaps you have looked at images of the Chicxulub crater on the Yucatan peninsula and wondered about asteroid impacts on the Earth or craters on the Moon but what about something closer to home? What if the impacting object were liquid and the impact surface more sand like? It’s a problem that affects how rain is absorbed by soil as well as the manufacture of many drugs in the pharmaceutical industry. But it is also something that we could experiment with in coffee. Is there a difference between craters formed in espresso pucks compared to those in the coffee in the filter paper of a V60?

bloom on a v60

Bubbles in a V60 filter – but what is the impact of individual drops of water on the dry grains of coffee? The ultimate in slow coffee.

Recently, a study appeared in Physical Review E that investigated the crater shapes produced by water droplets on a bed of dry glass beads (imitating sand). The effect of the impact speed of the water droplet as well as the packing density of the granular bed (sand/coffee) was studied. A high speed camera (10 000fps) was used in combination with a laser to reveal how the shape of the craters changed with time, from the initial impact right through until the crater was stable. The authors came up with a mathematical model to consider how the energy of the falling droplet was distributed between the impacting drop and the sand bed. Does the droplet of water deform first or does the energy of the impact go into displacing the sand and so forming the crater?

Perhaps unsurprisingly, when drops of water fell onto dense beds of sand (think espresso pucks but not quite so packed), the craters produced were quite shallow. It would take a lot of energy to displace the densely packed sand but not quite so much to deform the droplet. But when the drops fell onto looser sand beds (think drip brew coffee) the crater produced formed in two stages and depended on the velocity of impact. A deep crater was formed as the drop first impacted the sand. Then as the camera rolled, the sides of the crater started to avalanche producing much wider craters that had different shapes in profile (from doughnut to pancake type structures). For looser beds of sand, the faster the impacting drop, the wider the final crater. You can read a summary of the study here.

So what would happen for craters produced during making an espresso compared to those produced making a drip brew? A first approximation would be that the espresso coffee is more densely packed, so the craters should be shallower and less wide than those produced in the loose packed filter coffee. However then we need to think that the water used in making espresso is forced through the puck with high energy. In contrast, in drip brewing techniques, the water used has a lower impact energy, (it could be said that the clue is in the name). So the energy of the impact would form larger craters in the espresso pucks and smaller craters in the drip brewers, an opposite expectation from that of the packing densities, which effect wins?

coffee ground in a candle holder

Early experiments with coffee grind craters: There are advantages to working with glass beads and high speed cameras.

But is there anything else? Grind size! Espressos are made using finely ground coffee beans, with a typical “grain size” being about 10μm (0.01mm). Drip brewed coffee is somewhat coarser, a typical medium grind being compared to grains of sand (which vary between 0.05-2mm, 50 – 2000μm but we’d expect ‘medium’ ground coffee to be at the lower end of that). This is fairly similar to the ‘sand’ used in the study in Phys Rev E which used grains of size 70-110 μm. A slightly earlier study had shown how the crater shape depended on grain size for ‘sand’ ranging from 98 to 257 μm. That study had revealed that how the water interacted with the different grain sizes depended in turn on whether those grains were hydrophilic (wettable) or hydrophobic (water proof). It is probably safe to assume that the coffee used in an espresso grind has the same hydrophilic properties as the coffee used in drip brew but even so, we still have those three variables to contend with, packing density, impact energy and grind size. So, happy experimenting! Let’s find out how the impact craters left in coffee change with preparation method. And whatever else, it’s a perfect excuse (if one were really needed) to drink more coffee while slowing down and properly appreciating it.

With thanks to Dr Rianne de Jong for pointing me in some interesting directions (not all of which fitted in this piece) towards the interaction of water with coffee, more coming soon I hope.