Categories
Coffee cup science General

Copper latte

Brew&Bread, latte art Sun, KL latte art
Taken at Brew & Bread, One City Mall, Subang, KL, Malaysia

Pop into any cafe and order a latte and chances are you’re going to see some great latte art. With the number of good baristas around competing to produce the best and most consistent latte art, it is easy to see some good art while waking up of a morning. Brew & Bread is a cafe with a couple of outlets in Kuala Lumpur in Malaysia. One of their customers sent me these images of their latte art (via Bean thinking on Facebook), which I think are among the finest examples I have seen of latte art being served, as a matter of course, at cafés. Apparently the people at Brew & Bread take their latte art very seriously, so if you find yourself in One City Mall, Subang or Kota Kemuning in Kuala Lumpur, do take the opportunity to pop in.

Not being a barista I can only guess at the skill that it takes to produce such great images as those at Brew & Bread. As a scientist though I can see some connections between latte art and copper mining. Or rather, the link between good latte art and bad copper mining (and vice versa). How? It’s all about the bubbles.

The small bubbles in the foam on the left trap coffee between them. The larger bubbles in the foam on the right allow coffee particles (and water) to leak and don't trap them so well.
The small bubbles in the foam on the left trap coffee between them. The larger bubbles in the foam on the right allow coffee particles to drain by gravity and don’t trap them so well.

Now, I am on dangerous ground here because I have no experience in making latte art, nor really in steaming milk, so I hope that any baristas out there will leap in and leave comments if I have something awry in my description of how latte art is sustained. However, from various videos and how-to’s available online it seems that a key component for good latte art is making the milk into a micro-foam; a ‘velvety’ structure of tiny bubbles. From a physics perspective this makes sense. As the milk is first introduced into the espresso it picks up the crema on the espresso and captures the coffee-liquid mixture between the surfaces of the bubbles of the froth. A large number of very small bubbles will trap the coffee liquid and particles around the bubbles very well (see diagram). If the milk has too many large bubbles, not only will the mouth-feel get affected, the coffee itself is not held and trapped so well within the bubbles. When the art is about to be created, the barista slows the rate of pouring such that the coffee does not get pulled up with the milk and instead the milk foam is allowed to float on top of the espresso where it remains white. It is this contrast between the trapped coffee in the fast-poured milk and the pure milk of the more slowly poured milk that leads to the contrasts of what is known as latte art.

beer foam, bubble size
The bubbles get larger as they move higher up in a foam column. Shown here in a narrow glass of Corsendonk Agnus (beer)

Now consider copper mining. It is an unfortunate fact that we as a society are very reliant on mined products including copper. Copper is the backbone of our electricity network meaning that if you are reading this at all, you are relying on copper that has been mined somewhere in the world. Mining is a fact of our modern way of life. The question is how to reduce its environmental impact to a minimum. One way to minimise the environmental aspect of mining would be to ensure that it is as efficient as possible. Copper is often found in two forms, a relatively easy to extract oxide and the sulphides of copper which are harder to extract. The ‘froth flotation’ technique has been developed to maximise the extraction of these sulphides by using a foaming vat in a process that is the exact opposite of latte art. The copper sulphide rocks are ground until they are very small (around 0.05mm diameter) whereupon they are reacted with chemicals that make them hydrophobic (resistant to bonding with water). Other particles and rocks, that are mined together with the copper sulphides, do not react with the chemicals and so are less hydrophobic. The resulting ‘grind’ is mixed into a slurry and then introduced into a chamber which is aerated to form bubbles. As they are hydrophobic, the copper sulphide particles attach themselves to the newly formed bubbles to reduce their contact with water. The bubbles are then carried up through the chamber, taking the copper with them. The small bubbles at the bottom of the vat trap a lot of water and waste material between them. As the bubbles move upwards through the vat, they get larger (by combining with each other) and, whereas the copper sulphides, which are chemically attached to the bubbles remain with the larger bubbles, the liquid and waste material drains out towards the bottom of the tank. The copper products can then just be skimmed off the top of the vat. Unlike latte art, larger bubbles are useful in froth flotation in order that particles do not get trapped between the bubbles. What is good for the copper mining is bad for the latte art and vice versa. The more we know about the bubbles in foams (in both latte art and froth flotation) the more efficient and the more aesthetically beautiful our world can be.

Another from Brew & Bread
Art for Christmas, another piece of great latte art from Brew & Bread

I would be very interested to know your thoughts on why a microfoam is needed for good latte art or indeed, any aspect of latte making. Please do feel free to share any good photos of latte art (or cafe recommendations) either here in the comments section or on Bean thinking’s Facebook page. There will be another latte art article in the New Year so new photographs (or cafe recommendations) would be greatly appreciated.

With special thanks to Oh Ying Ying for the photographs from Brew&Bread.

Categories
Coffee cup science Observations

The attractive power of coffee

Just imagine, you are trying to fill 3 espresso cups at once but all you have is a portafilter with two spouts and a balloon? Ok, that sounds unlikely. The experiment that I’m going to describe however will allow you to bend a stream of coffee with a balloon. Moreover, in order to work it relies on sub-atomic particles. What a party trick; investigating sub-atomic physics while filling two cups with one stream of coffee. It could be mind bending, instead it is coffee bending.

What happens?

When you rub an inflated balloon on your (dry) hair, electrons are transferred from your hair to the rubber balloon. Electrons are, of course, sub-atomic particles and, together with protons and neutrons, they build up atoms. As these electrons carry an electric charge, the balloon becomes the source of a static electric field.

Thanks to Artemisdraws for the schematic
The electric field from the balloon aligns the water molecules such that the coffee gets attracted towards the balloon.

Water molecules are composed of two hydrogen atoms and an oxygen each. They are electrically neutral. However water is also a strongly polar molecule, meaning that when it is subjected to an electric field, the molecules will tend to align such that they are more positively charged closer to the negatively charged balloon and more negatively charged further away from the balloon. This charge distribution means that the stream of water gets attracted towards the balloon. The amount that the coffee stream bends is dependent on the strength of the electric field from the balloon and the mass of the stream which is still being pulled down by gravity.

The video suggests using cold brew coffee when you test this at home. There are two reasons for this. Firstly, if the balloon gets too close to the coffee stream, it can get splashed. There is a chance that this may burst the balloon. Secondly, and more fundamentally, the water molecules are more agitated at higher energies (temperatures). This means that thermal agitation weakens the average dipole moment of the water thereby weakening the attraction between the coffee stream and the balloon. In this effect as in its taste, cold brew is a stronger drink than your ordinary hot filter.

Let me know if you try this and how you get on. It would be particularly interesting to see any attempts made on bending coffee from an espresso machine. My thanks, as always, to artemisdraws for the helpful schematic shown here.

Categories
Coffee cup science Observations

The destructive power behind a spoon

Have you ever sat waiting for someone in a coffee shop, slightly bored? Resisting the urge to check your email or Twitter on the phone (perhaps the battery is dead), you have been stirring your coffee and playing with the vortices that form behind the spoon. Have you wondered why they form? Or played with detaching a vortex from the spoon and getting it to ‘bounce’ off of the side of the cup?

chimney, coffeecupscience, everydayphysics, coffee cup science, vortex
The spiral around this chimney helps to prevent vortex formation in high winds

Such vortices form behind objects in a flow of liquid when either the speed of the liquid, or the size of the object, reaches a critical value. The research about how and why these vortices form is a huge field. From improvements to plane design, through understanding insect flight and even into how wind instruments such as flutes work, understanding these vortices is a challenging topic. It is also useful to know about the behaviour of these vortices when designing chimneys in order to prevent their collapse.

Chimneys are of course stationary, but when they are in high winds, vortices form around the chimney just like the vortices behind the spoon (rather than the spoon moving through the coffee, the wind moves past the chimney). At relatively low speeds, the wind forms small whirlwinds as we see behind the spoon in the coffee. At higher wind speeds, the vortices forming behind the chimney can start to detach and form a pattern known as a Karman vortex sheet. As each vortex detaches from the chimney it subjects the chimney to a small force. Under some conditions and around some objects, this can result in the rather beautiful sounds of the Aeolian harp. Under more extreme conditions, it can result in the collapse of chimneys. The Ferrybridge C cooling towers collapsed in 1965 in high winds as a result of the turbulence around the cooling towers. To minimise the chances of such vortex sheets forming, chimneys are now designed with a spiral pattern (pictured) around them. Far from being an aesthetic feature, this spiral channels the wind so that vortex sheets cannot form behind the chimney.

Something to think about next time you’re waiting for someone in a cafe.

Categories
Coffee cup science Coffee review General

Helium in your coffee?

C-C bond, Esters N16
The sign board at Esters. Note the zig zag underline

As a website based on the physics inside a coffee cup, it was only a matter of time before I visited Esters in Stoke Newington. The name has significance to anyone interested in the physics (or chemistry) of coffee and the signboard outside the shop confirmed it. Under the name, there is a zig zag underline that represents part of a molecular structure. The end of each straight line signifies a carbon atom which is bonded to its neighbouring carbon atom by either a single (one line) or a double (two lines) bond. Inside you can enjoy (as I did) single estate coffees that can be prepared (if there are 2 or 3 of you) in a Chemex, appropriately enough. As I left Esters, I wandered through a local park where, near the entrance to the park, were two helium balloons caught in a tree. One had deflated, the other floated, dejectedly, just beneath the branches. Such a timely observation! The story of the discovery of helium connects the signboard at Esters, a cup of coffee and helium itself, how could that be? You’ll just have to keep reading to find out.

neon sign, light emission
The colours of “neon signs” depend on the particular gas (eg. neon) in the tubes

Helium is the second most plentiful element in the universe but on earth it is relatively rare. It was therefore not discovered on earth but, instead, by looking at the Sun. Its ‘discovery’ in the Sun was due to the way in which atoms interact with light. The atoms in each element emit (or absorb) light at specific frequencies. These frequencies correspond to different colours. It is this property of atoms that creates colours such as the distinctive hue of neon lights. In 1868 two astronomers were observing the same solar eclipse. Independently of each other, they noticed a distinct emission of light from the Sun at a wavelength of 587.49 nanometres (yellow-ish). This emission line corresponded to no element that had been found on earth and so one of them, Norman Lockyer suggested naming this new element helium, after ‘Helios’ the Greek god of the Sun. Helium was not found on earth for another 27 years when William Ramsay isolated it from a uranium based compound. The gas that Ramsay extracted, absorbed and emitted light at the same frequency as the two astronomers had observed for the element in the Sun. Helium had been found on earth.

Think of energy levels as rungs on a ladder. Image credit © www.artemisworks.co.uk
Think of energy levels as rungs on a ladder. Image credit © www.artemisworks.co.uk

Atoms absorb (and emit) light because of the way that the electrons in the atoms are arranged around the atomic nucleus. The electrons exist in discrete energy states that we can imagine as rungs on a ladder.  Electrons move between the states by absorbing, or emitting, light at specific energies (corresponding to a step up, or a step down on the ladder). As the energy of light depends on its frequency, the colour of an element depends on the spacing of the rungs of this atomic ladder, which is different for different elements. The energy ladder of helium atoms means that helium emits light at 587.49 nanometres. In organic molecules (ie. all the molecules that make up you and I and coffee), it is often the double carbon bonds that provide the energy ‘step’ in the visible range of light. Depending on the number of carbon atoms that are double bonded and the number in the molecule that are not, the energy step is tweaked slightly so that it will absorb in the red region in some materials and in the blue in others. We have our link between the sign at Esters and the observations of the astronomers.

However the explanation above depends on knowing some properties of electrons in atoms and some details of quantum mechanics. Neither electrons (discovered in 1897) nor quantum mechanics were known to the discoverers of helium. How did the astronomers recognise that their observation of a particular colour of light meant that they had identified a new element? Part of the answer must be based on experience. Experimentalists had already found out that different materials absorbed (and emitted) light at different but specific, frequencies. The other part of the answer brings us to our link with coffee.

A milk ring in water. Once it was thought that atoms might look like this.
A milk ring in water. Once it was thought that atoms might look like this (but a lot smaller).

In the video Coffee Smoke rings, we can make rings of milk travel through coffee or water. These rings are vortices which are closed up on themselves to form a doughnut shape. Mathematically, the vortex ring is a completely stable structure, it never decays. You could argue that the reason that it decays in the video is because we live in a non-ideal world with non-ideal liquids (milk and water). Returning to the mathematical world, each vortex ring will vibrate at specific, (resonance) frequencies dependent on its diameter, just like a bell rings with a note dependent on the size of the bell. So, even without knowing about electrons or quantum mechanics, it becomes conceivable that the atoms that go to make up a substance have specific resonance frequencies. If you imagine that atoms are in fact extremely small vortex rings (of the kind you find in a coffee cup), the model even has a predictive power. In 1867 William Thomson proposed such a “vortex atom” model and suggested that the distinct vibrations of the rings led to energy levels, like the ladders of later quantum mechanics and exactly of the sort that were observed by the astronomers. By considering that a sodium atom was made out of two inter-locked vortex rings, the light emission of sodium could even be accounted for. It was therefore entirely conceivable that elements would have distinct fingerprints as the astronomers had observed for this new element, helium.

We have therefore found the connection between the signboard at Esters, milk rings in a coffee cup and the discovery of helium. You would be forgiven for thinking that part of the connection is purely historical, after all, our current models of the atom do not rely on vortex rings at all. However, there is a relatively new theory called “string theory”. More fundamental than atoms, string theory proposes that there exist ‘strings’ that may be closed on themselves and that have specific vibrations that depend on their size and geometry. Sound familiar? Perhaps the connection with the milk rings lives on.

Categories
Coffee cup science General

Does nature hate a vacuum?

The problem tea pot
The problem teapot

A few weeks ago, while having lunch with colleagues, one of them was complaining about his problems with his morning tea. So desperate he was to get his cup, he kept tipping the teapot to steeper and steeper angles in an attempt to increase the rate of pouring. Unfortunately, when he did so, the flow out of the spout became chaotic and, rather than having a nice cup of tea, he had a mess on the table. Another colleague suggested (sensibly) that it was a problem with the air-hole at the top of the teapot, not enough air was getting into the pot to enable the tea to flow smoothly out. In fact, my colleague’s tea pot problem turned out to have a different cause that will be featured in the Daily Grind in a few weeks. However, it did get me thinking about the purpose of the air hole in take-away coffee cups.

On the lid of a take-away cup are two holes. One, for drinking from while in a rush to get from A to B, the other, a very small air inlet hole that allows the coffee to flow nicely from the drinking hole. The requirement for such an air inlet has been known for millenia, however it was not understood why it was needed. Traditionally it was explained by saying that “nature abhors a vacuum”, the idea being that the coffee could not leave the cup because if it did so it would leave a vacuum which nature ‘does not allow’.

Take-away cup, plastic lid, equalisation of air pressure
The lid of a take-away cup has two holes. One for drinking from, the other to let air in.

An immediate problem with such an argument is that it implies that coffee has a will; nature ‘does not want’ a vacuum. Indeed for Rene Descartes (of “I think therefore I am” fame) this was a key problem with the traditional explanation. Descartes died in Stockholm in 1650, although for twenty years before that he had lived in Holland. For Europeans, the Dutch were fairly fast off the mark in terms of the introduction of coffee into their society. They had managed to get hold of a coffee plant in 1616 but only started properly growing coffee for themselves (in Ceylon!) in 1658, a few years after Descartes’ death. It is therefore unlikely that Descartes ever had the opportunity to try much coffee. Instead, when Descartes thought about the importance of air holes, the example that he used was a wine cask. In ‘The World‘, written in about 1632 he states “When the wine in a cask does not flow from the bottom opening because the top is completely closed, it is improper to say, as they ordinarily do, that this takes place through ‘fear of a vacuum’. We are well aware that the wine has no mind to fear anything; and even if it did, I do not know for what reason it could be apprehensive of this vacuum…”

Oranda, fish, Descartes water fish example, air pressure equalisation
The space behind a swimming fish is immediately filled with water as the fish moves forward.

For Descartes, the reason that an air hole was needed in the wine cask was not because nature hated a vacuum but because, on the contrary, nature was completely ‘full’ of matter. Whether that matter was wine, air or the material that made up the barrel, the world was full of ‘stuff’, meaning that if wine came out of the cask the air that it displaced had to go somewhere. Having nowhere else in the universe to go, this displaced air would have to go into the region of the cask that the wine had just vacated. Descartes compared this movement of air into the top of the cask to the displacement of water by fish as they swam through water. We may not notice the water in front of the fish moving to the back as the fish swims through the water but we know that the water must fill the empty space left by the moving fish. In the same way we do not perceive the air to flow from the outlet of the wine cask to the top of the barrel, but we know that it must (because, Descartes thought, it had nowhere else that it could go).

This explanation had far reaching consequences for Descartes world view. He could explain gravity and the motion of the planets as a consequence of the planets moving in a giant vortex of a substance around the Sun. The image of the solar system as a giant cup of coffee being stirred is one that the Daily Grind is sure to return to at some point. For the moment though, we need to step back and think. We know that the universe is not ‘full’ in the sense meant by Descartes and so this part of his explanation must be wrong, but why is it that blocking the air inlet hole stops the flow of water out of the cup?

coffee cup science, coffeecupscience, everydayphysics
Whether coffee leaves the cup or not depends on a balance of forces

Think about the schematic shown here. Gravity is pulling on the mass of coffee in the cup through the drinking hole. Air pressure is acting against this pull, pushing the coffee back into the cup (if you ever wanted a demonstration of how powerful air pressure can be, try sealing an empty water bottle before coming down a mountain or at the start of the descent in a plane). There is also air pressure inside the cup acting downwards on the coffee. With the air hole open, this air pressure is fairly equal to that outside of the cup. The inside air pressure cancels the outside air pressure, gravity wins and the coffee comes out. Imagine now closing the air hole. No air can get into the cup so, after a little coffee leaves, the air pressure inside the cup drops to less than the air pressure outside of the cup. This time, the air pressure outside the cup pushes the coffee back into the cup more than gravity pulls it out and the coffee stays in the cup. Can we test this explanation? One way to test the theory would be to somehow change the pressure inside the cup. Using two identical cups (which I got from the very friendly people with good coffee at Iris and June), the video below shows two experiments. In the first, both cups are filled with the same amount of cold ‘coffee’ (no coffee is ever wasted in these videos, dregs are recycled). The second experiment shows one cup holding cold coffee, one holding steaming coffee. Why might these experiments support the theory that it is air pressure that keeps the coffee in? Perhaps you can think of better experiments, or improvements to this one, let me know in the comments section below, but most of all, enjoy your coffee while you do so.

(note that the cups had got a bit water damaged through practise runs before filming. Note also that for this experiment to be meaningful, you would need to repeat the measurements many times so that you can build up a statistical picture, but that would make the video quite boring).

Categories
Coffee cup science Observations

Musical Coffee

Tasting notes from Finca San Cayetano coffee
Tasting notes from Hasbean’s Finca San Cayetano coffee

A few weeks ago, I chanced upon an article “Listening to Stars Twinkle” (link) via Mr Gluckin on Twitter. At very nearly the same time, I received in the post, a new coffee from Hasbean (link) which suggested an entertaining coffee (see pic).  A perfect time to have some fun with coffee, I think.

The article was about ‘stellar seismology’: Understanding the inside of a star by watching sound travel through it. We know from daily experience that the way sound travels through air depends on the temperature of the atmosphere.  Sounds can appear to travel further on cold evenings than on warm nights for example (for an explanation of this effect click here). Conventional seismology on earth uses the same principles. By measuring how sound is deflected as it travels through the earth, geologists can work out the type of rock in the interior of the earth (and whether the rock is solid or molten).

Burmese bell, resonating bells, stars
A bell rings with a note that depends on the composition (bronze) and shape of the bell. © Trustees of the British Museum

Unlike these earthly examples though, ‘listening’ to a star is not so easy.  We cannot hear stars vibrate as sound travels through them. We can only view them from a distance.  It is therefore very fortunate that the surface of a star will start to move noticeably as the sound travelling through the star hits one of the star’s ‘resonances’. Just as a bell has a tone depending on its shape and what it is made of, so a star has a series of ‘notes’ that depend on the composition and temperature of the star. These ‘notes’ are the star’s resonances and we can find out what they are by watching the different patterns on the star’s surface. Each resonance has a distinct, signature pattern which is dependent on the ‘tone’ of the resonance, much like the patterns you can see on the surface of a coffee by dragging a take-away cup across a table. The temperature and composition of the interior of the star determine the ‘notes’ of the resonances and so, by looking at the surface vibrate we can work out what is inside a star.

Can we illustrate this with a cup of coffee?  Of course we had fun trying.

In the video, the hot coffee is poured into a take-away cup that I have previously made into a loud speaker.  In the next few days I will upload details of the making of the speaker onto the Daily Grind. Hooking up the speaker to my phone, I could easily play music through the cup (and through the coffee).  But by connecting the cup-speaker to the phone with a tone generator app installed (free and downloadable from the app store for iPhones and probably similar for Android phones) I could generate single ‘notes’ through the speaker from 1Hz to 20 kHz.  Our ears are only sensitive to frequencies from approximately 20 Hz-20 kHz so below 20 Hz we cannot hear the notes being played.

home made loud speaker, coffee cup, kitchen table physics
The coffee cup speaker in an improved design

Nonetheless between 12 and 13 Hz, the surface of the coffee started to show a lot of movement. Although the distinct patterns of a resonance could not be seen (perhaps the speaker, lighting or other experimental conditions needed optimising), we can clearly see the coffee resonate as the surface is vibrating so strongly at these frequencies. As the tone was changed to down to 10Hz or up to 14Hz, the vibrations faded. The ‘resonance’ of the hot coffee filled cup-speaker was 12-13 Hz.  If the cup were to be filled with yoghurt or only half filled, we would expect the ‘note’ at which the surface vibrated to change. Indeed, in this latter case, I could no longer find the resonance anywhere near 12-13 Hz.

‘Listening’ to the coffee by watching its surface means that we can, in principle, work out the properties of the coffee, its temperature, density etc.  And it is in this way that we ‘listen’ to stars ‘twinkle’ so as to understand our universe more.  So thank you MrGluckin and Hasbean for providing an entertaining couple of weeks for me!  Please try this at home and let me know what you discover in the comments section below.

Important Disclaimer: No coffee was wasted in this experiment! I had already finished drinking the contents of the cafetiere and just used the old grounds to provide the ‘coffee’ in the video.

Extra thanks: Becky Ramotowski and Gardensafari.net for the photos. The photos from Garden Safari are © www.gardensafari.net