solar wind

Drip coffee

The universe is in a cup of coffee. But how many connections to different bits of physics can you find in the time it takes you to prepare a V60? We explore some of those links below while considering brewing a pour-over, what more do you see in your brew?

1. The Coffee Grinder:

coffee at VCR Bangsar

Preparing a V60 pour over coffee. How many connections can you find?

The beans pile on top of each other in the hopper. As the beans are ground, the bean pile shrinks along slipping layers. Immediately reminiscent of avalanches and landslides, understanding how granular materials (rocks & coffee beans) flow over each other is important for geology and safety. Meanwhile, the grinding itself produces a mound of coffee of slightly varying grain size. Shaking it would produce the brazil nut effect, which you can see on you breakfast table but is also important to understand the dynamics of earthquakes.

Staying at the grinding stage, if you weigh your coffee according to a brew guide, it is interesting to note that the kilogram is the one remaining fundamental unit that is measured with reference to a physical object.

2. Rinsing the filter paper:

V60 chromatography chemistry kitchen

A few hours after brewing pour over, a dark rim of dissolved coffee can be seen at the top of the filter paper. Chromatography in action.

While rinsing the filter we see the process of chromatography starting. Now critical for analytical chemistry (such as establishing each of the components of a medicine), this technique started with watching solutes ascend a filter paper in a solvent.

Filtration also has its connections. The recent discovery of a Roman-era stone sarcophagus in the Borough area of London involved filtering the excavated soil found within the sarcophagus to ensure that nothing was lost during excavation. On the other hand, using the filtered product enabled a recent study to concentrate coffee dissolved in chloroform in order to detect small amounts of rogue robusta in coffee products sold as 100% arabica.

3. Bloom:

bloom on a v60

From coffee to the atmosphere. There’s physics in that filter coffee.

A drop falling on a granular bed (rain on sand, water on ground coffee) causes different shaped craters depending on the speed of the drop and the compactness of the granular bed. A lovely piece of physics and of relevance to impact craters and the pharmaceuticals industry. But it is the bloom that we watch for when starting to brew the coffee. That point where the grinds seem to expand and bubble with a fantastic release of aroma. It is thought that the earth’s early atmosphere (and the atmosphere around other worlds) could have been helped to form by similar processes of outgassing from rocks in the interior of the earth. The carbon cycle also involves the outgassing of carbon dioxide from mid-ocean ridges and the volcanoes on the earth.

As the water falls and the aroma rises, we’re reminded too of petrichor, the smell of rain. How we detect smell is a whole other section of physics. Petrichor is composed of aerosols released when the rain droplet hits the ground. Similar aerosols are produced when rain impacts seawater and produces a splash. These aerosols have been linked to cloud formation. Without aerosols we would have significantly fewer clouds.

4. Percolation:

A close up of some milk rings formed when dripping milk into water. Similar vortex rings will be produced every time you make a pour over coffee.

Percolation is (almost) everywhere. From the way that water filters through coffee grounds to make our coffee to the way electricity is conducted and even to how diseases are transmitted. A mathematically very interesting phenomenon with links to areas we’d never first consider such as modelling the movements of the stock exchange and understanding the beauty of a fractal such as a romanesco broccoli.

But then there’s more. The way water filters through coffee is similar to the way that rain flows through the soil or we obtain water through aquifers. Known as Darcy’s law, there are extensive links to geology.

Nor is it just geology and earth based science that is linked to this part of our coffee making. The drips falling into the pot of coffee are forming vortex rings behind them. Much like smoke rings, they can be found all around us, from volcanic eruptions, through to supernovae explosions and even in dolphin play.

5. In the mug:

Rayleigh Benard cells in clouds

Convection cells in the clouds. Found on a somewhat smaller scale in your coffee.
Image shows clouds above the Pacific. Image NASA image by Jeff Schmaltz, LANCE/EOSDIS Rapid Response

Yet it is when it gets to the mug that we can really spend time contemplating our coffee. The turbulence produced by the hot coffee in a cool mug prompts the question: why does stirring your coffee cool it down but stirring the solar wind heats it up?

The convection cells in the cooling coffee are seen in the clouds of “mackerel” skies and in the rock structure of other planets. The steam informs us of cloud formation while the condensation on the side of the cup is suggestive of the formation of dew and therefore, through a scientific observation over 200 years ago, to the greenhouse effect. The coffee cools according to the same physics as any other cooling body, including the universe itself. Which is one reason that Lord Kelvin could not believe that the earth was old enough for Darwin’s theory of evolution to have occurred. (Kelvin was working before it was known that the Sun was heated by nuclear fusion. Working on the basis of the physics he knew, he calculated how long the Sun would take to cool down for alternative mechanisms of heating the Sun. Eventually he concluded that the Sun was too young for the millions of years required for Darwin’s theory to be correct. It was the basis of a public spat between these two prominent scientists and a major challenge to Darwin’s theory at the time).

 

Of course there is much more. Many other links that take your coffee to the fundamental physics describing our world and our universe. Which ones have you pondered while you have dwelt on your brew?

Causing a stir

coronal hole, Sun

Where it all begins. The dark object is a Coronal hole on the Sun. Image credit and copyright NASA/AIA

What’s the difference between your cup of coffee and the solar wind (the fast stream of charged particles emanating from the Sun)? Perhaps this seems a strange question, we ought first to ask what connects your coffee with the solar wind. But, when we look at what connects them, you may be surprised to find the reason that they are different.

The solar wind is a flow of charged particles that streams past the Earth at roughly 400 km/s. To put this figure into some perspective, 400 km/s is 24, 000 km/min which means that the wind travels from the Earth to the Moon in 16 minutes. In comparison it took  Apollo 11 over 3 days between leaving Earth’s orbit and entering the Moon’s (over 4 days between launch and landing). The particles in the solar wind originate in the Sun’s Corona where temperatures get so hot that the gases have enough energy to escape the gravitational pull of the Sun itself. As these particles reach the Earth, they encounter the Earth’s magnetic field and, being rapidly slowed down by the Earth being in the way, a shock wave forms which is known as the Earth’s Bow Shock.

We must all have dragged a spoon through coffee and watched as the vortices form behind the spoon. It is a low-speed example of turbulent behaviour in the coffee. So it is perhaps not surprising that when the very hot and very fast solar wind hits the magnetic field region of the Earth, we find turbulence there too.

vortices in coffee

Vortices behind a spoon being dragged through coffee are an example of turbulence.

Now when we stir our coffee, we will see that there is one big rotation of fluid in the direction of the spoon but we may also notice smaller eddies in the drink. Some of these form from the fact that the coffee is rotating but the mug’s walls are staying motionless, friction forces the fast moving coffee to slow down at the walls. You can actually see this effect if, rather than stirring your coffee, you put it on a record player (or other rotating platform) as has been featured on Bean Thinking previously. Similarly, when you have a large vortex in the form of a smoke ring, it can decay into many smaller vortex “smoke rings” in what is known as a vortex cascade. This too is an effect that you can see in coffee (but rather than smoke rings you can make milk rings with a straw). Very often these milk rings will decay into many smaller rings in the same sort of vortex cascade as you get with the smoke, you can see a video of the effect here or at the bottom of this post. Big vortices decay into smaller vortices until they (to our eyes) disappear entirely.

vortices, turbulence, coffee cup physics, coffee cup science

Vortices created at the walls of a mug when the whole cup of coffee is placed on a rotating object (such as a record player). This is an image of water in a rotating mug with a drop of ink placed next to the mug’s wall.

The important thing is that this type of vortex cascade has also been observed in the solar wind. Rather than a giant spoon though, the solar wind stirs itself as the fast wind encounters the (relatively) slow Earth. We are used to stirring our coffee as a way of cooling it down, perhaps we blow on it gently to speed up the cooling process. But this is the difference between your coffee and the solar wind. When the solar wind is stirred up, it gets hotter. To examine how this occurs, scientists have been examining data from the Cluster set of satellites. Launched by the European Space Agency to study the magnetosphere of the Earth, Cluster has provided clues as to how the solar wind differs from a cup of coffee. Back in 2009, scientists analysed the data from Cluster looking at precisely how the turbulence produced as the solar wind meets the magnetosphere cascades into different sorts of eddies, different levels of turbulence. Comparing the data to theoretical models, they showed how the turbulence started off on large length scales (of the order 100 000 km), and decayed into smaller and smaller length scales until it reached 3km. At this point, all that energy, all that motion was dissipated as heat. Stirring the solar wind heated it up.

Why does stirring the solar wind heat it up whereas stirring your coffee cool it down? It’s to do with the environment of the coffee and the wind. On the Earth, the coffee will be surrounded by a cooler atmosphere. Stirring the coffee brings the hot liquid into contact with the cooler air and so the heat from the coffee can escape more efficiently into the atmosphere. They say in space, no one can hear you scream, which is another way of saying that there is no atmosphere through which sound waves can travel¹. No atmosphere means that there is no way of the heat generated by all that turbulence getting dissipated into a cooler air around it. So, as heat is energy, all that energy involved in stirring up the solar wind gets dissipated as heat in the wind which then has a higher temperature to that which we would naively expect.

So, next time you are waiting for your coffee to cool and stir it to hasten the process, take a moment to think about what is happening approximately 90 000 km above your head where the solar wind is being effectively stirred, and heated, by our planet’s magnetic field.

Seeing a vortex cascade in coffee:

 

¹The origin of the phrase however suggests that this was not quite the meaning that was intended, it was a promotional phrase used for the film Alien.