light

A Story with many layers, Clapham Junction

Story Coffee St John's Hill Clapham

The doorway to Story, or a story depending on how you look at it.

A “ghost sign” above the door to Story Coffee on St John’s Hill ensures that you know that you have arrived at the correct place. “Peterkin Custard, Self-Raising Flour – Corn Flour, can be obtained here”, only now it is coffee rather than custard that is sold in the shop beneath. The sign is an indicator to the many tales that could be discerned while exploring the coffee within. I had had a couple of attempts to visit Story Coffee (thwarted for a variety of reasons) before Brian’s Coffee Spot’s review appeared a couple of days after one of my attempted visits. Suitably re-motivated, another trip was attempted (address checked, closing times checked) and this time we were in luck. Although a pour over is listed on the menu, sadly this was not available on our visit and so I enjoyed a lovely long black instead (Red Brick, Square Mile) while looking at the cakes on offer. There was plenty of seating in which to shelter from the rain outside and many things to notice in this friendly café. In addition to the cakes and lunch menu, a box on the counter housed “eat grub” protein bars, protein bars made of cricket powder. Are insects the future for humans to eat protein sustainably?

glass jar at Story

Through a glass darkly?
The distortions produced by the refractive indices of air, water and glass and the shape of the glass produces interesting effects on our view through it.

The tables were well arranged for people to sit chatting while enjoying their beverages and it is always an excellent thing (from a personal point of view) to encounter a café with a no laptop (or tablet) at the tables policy. Complementary tap water was available in jugs placed on each table while it was also nice to note that Story branded re-usable cups were on sale from the counter. Many things we noted can be seen in the gallery pictures in the review on Brian’s Coffee Spot: the funky fans, the egg shaped light shades, the light introduced by the large glass window panes (though it was a much fairer day on Brian’s visit than on ours). Each had its contribution to a thought train, the way the glass water jar bent the light coming through, the concept of a Prandtl boundary layer in fluids (and its connection to both fans and coffee cups). Moreover there were hexagons, which for someone who has worked on the periphery of the graphene craze, are always thought provoking.

Apart from hexagons decorating the top of the stools, there were hexagons lining the counter made of cut logs, each showing the rings from the tree that was felled. Rather than a flat surface, these hexagons were made to be different thicknesses on the wall, rather like the hexagonal columns of the Giant’s Causeway. It is a subtle thing that may have implications for the space that is otherwise surrounded by flat, solid, walls. Such spaces can become echo-y and yet, the music and conversation in Story was not overly distracting presumably because features such as the uneven hexagonal wall reflected the sound waves such that they destructively interfered rather than echoed around the room.

every tree tells a story, but which story

A macroscopic crystal of hexagonally cut logs forms the side of the counter.

Each log in the hexagonal decoration was cut with its cross-section showing a number of tree rings. We know that we can age a tree by counting the rings (though each of these would be underestimated as they have been trimmed into hexagons post-drying), but what more do the tree rings, and the trees themselves have to tell us? The rings are caused by the rapid growth of large cells during spring followed by a slower growth of smaller cells as the year progresses. But this method of growth means that the cut logs have more to tell us than just their age. The spacing between the rings can tell of the weather the tree experienced during that year, were there many years of drought for example? Such clues, from the relative density of the tree rings, can help researchers learn about the climate in previous centuries, but conversely, reading the climate report in the rings can indicate in which year a tree was felled and so the age of a building for example.

coffee at Story

Many stories start with a coffee.

And then there is more, trees will grow at an average rate per year so that, as a rough guide, the circumference of a mature (but not old) tree increases by 2.5cm per year¹. There is therefore something in the idea that you can have a good guess at how old a tree is by hugging it. But this assumes that the tree is growing in its optimum conditions, far enough from any neighbouring trees so as not to be crowded into growing more slowly. So the absolute density of tree rings must also give a clue as to whether this tree was in a dense forest or an open clearing. Which is reminiscent of something else that living trees can tell you if you listen to them closely enough: trees will grow so that their leaves are exposed to the maximum amount of light. For us in the UK, this means that the crown of a tree will frequently tip towards the south (where the Sun is most often) and there will be more leaf growth (and consequently more branches) in a southerly direction². But again, we only see this if the tree has room to grow on its own, without the crowding, and competition, of too many neighbours. A solitary tree helps us to know which direction we are walking in.

empty coffee cup Story St John's Hill

While many coffees could also tell a story. It depends on how you read them.

Which all points to the idea that there are many stories being told all around us all of the time, the ones we hear depend on what we choose to pay attention to. So what about the story behind the ghost sign above the door? The Peterkin custard company was a venture by J. Arthur Rank in an attempt to start a milling company in the mould of his father’s (Rank Hovis McDougall, later bought by Premier Foods). The company failed and Rank went on to form the Rank Organisation that was responsible for many films made throughout the 40s and 50s as well as running a chain of cinemas around the UK. Truly a sign concealing many stories.

 

Story Coffee is at 115 St John’s Hill, SW11 1SZ

¹Collins complete guide to British Trees, Collins, 2007

²The Walker’s Guide to Outdoor Clues and Signs, Tristan Gooley, Hodder and Stoughton, 2014

 

 

 

 

An odd one out at Shot Espresso, Parsons Green

tubes playing with perspective Shot Espresso Parsons Green

The view from the ‘conservatory’ in Shot Espresso, Parsons Green

A couple of weeks ago we were wandering around the Parsons Green area in search of a coffee. Near the station, was a small shop front with a familiar name. Not quite a chain, but the logo of Shot Espresso is well known to me from its relatively new outlet in Victoria. It turns out that the Parsons Green branch is one of four outlets for Shot Espresso which started just around the corner in Fulham.

The staff were very friendly and took our order before we found seats at the back of the café. Although there was plenty of seating near the counter it was all taken, clearly this is a popular haunt on a Saturday afternoon. This did mean however that we found a cosy table in a small but very bright area, almost like a mini-conservatory. It seems we often have a long black and a soy hot chocolate and today was no exception. The hot chocolate was apparently perfectly well done my long black was fruity and drinkable, offering a perfect flavour backdrop against which to appreciate the area of the café.

Then a tricky decision. Ordinarily, I am not a fan of reviewing chains (though there is a question, does four branches equal a chain or not?). I’m a great fan of what an independent coffee shop can bring to an area, a place where the owners can be found behind the counter and you can really get to know a friendly space. However Shot Espresso is not that large a chain and the branch at Parsons Green had the feel of a local. The staff when we were there certainly took an interest in the running of the shop and, another factor in my decision to review, there were so many things to notice here.

infinity, shot espresso

Infinite tables? The logo on the table next to us at Shot Espresso Parsons Green.

I’ve already mentioned the light in the conservatory, there were also the light fittings in the main part of the bar. Wooden outlines of cubes around a light bulb that played with your image of perspective. On the tables next to us, the symbol of the manufacturers was similar to the symbol of infinity, why? But then, an oddity that prompted a mathematical curiosity. On each table was a miniature watering can holding sugar. It’s almost a game:

You have a mug of coffee, a cup of hot chocolate, a doughnut and this watering can on your table. Which is the odd one out and why?

If you answered the watering can, you would have been correct. Topologically the mug of coffee, cup of hot chocolate and the doughnut are the same whereas the watering can is quite different. What does that even mean? It means that in terms of shape, a doughnut can be morphed into a coffee mug which can clearly be morphed into a tea cup as they each have one hole through them. The watering can however has multiple holes, not just to hold it and to let the water out but also, in this ornament design, at the join of the body to the spout (look carefully). This means that there is no way that you can transform a watering can into a doughnut, they are different categories of shape.

table at Parsons Green Shot Espresso

A coffee cup and a miniature watering can. But which has more in common with a doughnut?

This field of mathematical study (which is known as topology) has, in recent years, taken on enormous significance to physics in terms of understanding some odd effects including the way that some materials conduct electricity (or not). Indeed, it has become so important that it was the subject of the 2016 Nobel Prize (you can read the citation here). And yet, even for someone who works in solid state physics and should have a mathematical background, trying to get my head around this subject is extremely difficult.

Which got me thinking about something similar. When teaching, it is sometimes apparent how much mathematics appears as if it is another language. And in parallel with language, it requires a fluency to appreciate its beauty. And further, even with a fluency, to appreciate some use of the language requires more than just fluency but immersion, a concentration, an attention to the words. Perhaps an analogy is needed. Although fluent in English, I do not usually immerse myself in reading it. Consequently, I find the poetry of John Betjeman amusing and ‘readable’, but the poetry of Gerard Manley Hopkins very difficult. With patience, and advice from others, occasionally I can gain a flash of insight into a poem of Hopkins and realise the brilliance of the language but more often I struggle. What I would never imagine doing is saying “I can’t read English, I was never good at it in school”.

And it is here that it seems to me the parallel with mathematics ends. For while we can have fun with algebra, understand some of the beauty in calculus and perhaps struggle with topology, we nonetheless seem happy in our society to say “I can’t do maths, I was useless at it in school”. We accept boasts about mathematical illiteracy when we would blush to say similar things about our native language (whether it is English or another language).

Why is that?

watering can, Shot Espresso, Parsons Green

A closer look at the watering can. The number of holes in the join to the spout would make this useless as a plant watering device.

Surely there are few who are genuinely mathematically illiterate, at least, not to the extent that it is ‘boasted’ about within society. Indeed, you find many who are happy to admit that they don’t “do” maths, actually just mean that they would prefer to use their phone to calculate something. Just as with a spoken language, the language of mathematics requires practise. For it is practise that allows us to appreciate the fun of mathematics just as it is practise that allows us to read poetry. Why do we deny ourselves the fun of a language because it is fashionable to admit illiteracy in it?

If you would like to push yourself with some mathematical poetry, you can read about topology, coffee and doughnuts here or in more detail here and more information on the 2016 Nobel Prize can be found here. In the meantime, if you see something mathematically beautiful in a café, please do share it, either here in the comments, on twitter or on Facebook.

Enjoy your coffee, tea or doughnuts.

Shot espresso can be found at 28 Parsons Green Lane, SW6 4HS

 

 

 

 

Good vibrations at Vagabond, Highbury

black coffee, Vagabond, Highbury

A good start to the day. Coffee at Vagabond.

A long black, flat white (with soya milk) and a tea. Yes, you could say we spent a fair while at Vagabond in Highbury the other week. It was a lovely space to catch up with an old friend again. There were plenty of comfortable seats and the staff were definitely friendly, supplying us with coffee and space to chat for a while. The coffee was good (Vagabond are roasters as well as a café) with batch brew and Aeropress/drip on offer together with the usual selection of coffees and other drinks. Tasting notes were on a black board behind the counter while on the wall, also behind the counter, was a drawing of a tongue taste map. While the science of this has been disputed, it does serve as a reminder for us to sit back and properly appreciate – and taste – what we are drinking.

Above the espresso machine was a long rectangular sign that said “coffee in progress”, suspended by four cables, one at each corner. Coffee orders were placed onto this sign allowing the baristas to keep track of who ordered which drink. Given how busy this café occasionally got (and we weren’t even there for lunch), it seems that this is a very handy system. Each time an order was placed on the sign, the whole sign oscillated, rather like a rigid trampoline. Even if you had not seen the note placed on the sign by the barista, you would get a clue, a piece of evidence, that something had just happened by the vibrations long afterwards. Perhaps you may say that the sign was some sort of “order-detector”.

order detector oscillation espresso machine

The “order-detector”: sign at Vagabond in Highbury

Or at least, that is what you may say if you were thinking about the LIGO (Laser Interferometer Gravitational waves Observatory) detectors that, back in 2015, detected the gravitational waves produced by two merging black holes between 700 million and 1.6 billion light years away. Not only do these detectors have similarities to the order-detector sign at Vagabond, the beauty of the LIGO detector is that you can start to understand how it works by staring into your coffee. The LIGO experiment consists of two detectors. Each LIGO detector is an L shaped vacuum tube (4km long) with a mirror at each ‘end’. A laser beam is split between the two legs and reflected back by mirrors at the end of each L. When the reflected laser beams return back to the detector at the corner of the ‘L’, how they interact with each other is dependent on the exact distance that each laser beam has travelled between the mirror and the detector. Think about the bubbles on the surface of your coffee. These colourful bubbles appear as different colours depending on the thickness of the bubble ‘skin’. You may remember being taught that, exactly as with oil slicks on water, it was about the constructive and destructive interference of the light waves. As each ‘colour’ has a different wavelength, the colours that destructively interfere change with the thickness of the bubble skin. You can determine the thickness of the bubble by the colour it appears.

LIGO photo

An aerial photo of the LIGO detector at Hanford. The mirrors are at the ends of the tubes going away from the main building. Image courtesy of Caltech/MIT/LIGO Laboratory

In the LIGO experiment, there is only one wavelength because the light is coming from a laser. So whether the detector registers an intense laser beam or the absence of one, depends on whether those two beams coming back from the mirrors interfere constructively, or destructively. (A deeper description of the technique of “interferometry” can be found here). As the gravitational waves emanating from the collision of the black holes encountered the mirrors at the ends of the L’s in LIGO, so each mirror wobbled a little. This small wobble was enough to change the intensity of the laser light received by the detector and so reveal that the mirrors had moved just that little bit. In fact, the detectors are so sensitive that they can detect if the mirrors move by less than the diameter of a single proton. Given that this is a sub-atomic distance, I don’t think I can even start to relate it to the size of an espresso grind, even a Turkish coffee grind is millions (billions) of times larger than the amount that these mirrors moved. Yet this is what was detected a couple of years ago in the now famous announcement that gravitational waves had been detected and that Einstein’s predictions had been shown to be true.

Watching the “coffee in progress” sign oscillate at Vagabond, it is clear how much engineering has gone into isolating the mirrors at LIGO enough that they do not move as people walk by. Yet perhaps it is interesting that, nonetheless, one of the final refinements of isolating the mirrors from the vibrations of the earth involved changing the material for the cables that suspended them, just as with the sign at Vagabond. You can learn more about the engineering behind this incredible feat of detection in the video here, or you can go to Vagabond, enjoy a lovely coffee and think about the physics of detection there.

Vagabond (Highbury) can be found at 105 Holloway Road, N7 8LT

If you would like to hear what the collision sounded like, follow the link here.

 

Can you see me? At 123 Gasing, KL

Coffee at 123 Gasing

Latte, Long black and chocolate muffin at 123 Gasing, PJ, KL

There are times when you can sit and observe things for quite a while before noticing the physics that becomes a cafe-physics review. There are other occasions when the subject of the review is staring you in the face indeed, it is practically there written for you, on a noticeboard in black and white. Such was the case at 123 Gasing, a cosy and quirkily decorated cafe located, strangely enough at 123 Jalan Gasing (ie. Gasing Road), in PJ, Kuala Lumpur. We enjoyed a lovely breakfast of scrambled egg, long black and a latte (along with a very rich chocolate muffin). The coffee is from Degayo (according to Malaysian Flavours) which means that it is practically a local food product (originating as it does from neighbouring Indonesia). Coffee with minimal ‘food miles’. The only point of regret about our time at 123 Gasing was that we didn’t manage to spend longer there.

decoration at 123 Gasing

Birds on the wall at 123 Gasing.

It is the decoration that strikes you as you look around this cafe. A couple of painted birds sit on top of an electrical wire, prompting the question “why do birds not get electrocuted when they sit on a wire?”. Another question painted to a notice board on the wall asks “what is it that we need that we cannot see or feel?” (answer at the end of this post). Yet it was another thought on another noticeboard that prompted this cafe physics review. That thought suggested invisibility (see picture below).

The idea of invisibility has fascinated story tellers and philosophers for millennia. Trying to render objects invisible is, understandably, very desirable for the military and the defence industry. Although we have always had access to camouflage and deception, it is only relatively recently that it has become feasible to talk about invisibility cloaks as a real possibility.

A sign at 123 Gasing

Am I invisible?

What has moved “invisibility cloaks” into the realm of reality has been the advent of a field called “metamaterials”. As the name suggests, metamaterials are not materials that occur naturally but materials that we manufacture. Combinations of different materials or repeating patterns of a specific material that interact with light in a way that the material itself would not do. The classic example is a so-called split-ring resonator (SRR). These are rings (that were first made with copper) which have a slice cut out of them. Many such rings are arranged in a repeating, lattice pattern. Due to the engineered pattern of the copper, these lattices interact with light in a way that ordinary copper does not (for details click here). Specifically metamaterials can be engineered to bend light around objects so that it appears that the object is not there.

In order to work, the artificial structures (e.g. the copper rings) must be smaller than the wavelength of light that is to be ‘bent’. This means that microwaves (which have a wavelength ranging from a few cm to a few m) can be manipulated far more easily than visible light (with a maximum wavelength of 700 nm, or about 1/100th of the size of a grain of espresso grind). At first sight this may seem disappointing until we remember that even devices that only work with microwaves would have a clear application for the defence industry (radar).

already disturbed

Hopefully not a comment on current scientific funding

There are many ethical and philosophical questions that follow from the fact that it is now within our reach to render some objects invisible. It is not a scientific question as to whether we should do it, the scientific question is whether we can. Where science and ethics collide though is in the funding issue. A subject such as this with obvious applications receives far more funding than fields that advance our understanding but do not enhance our weaponry. Indeed, one of the researchers involved in this field describes how he was “offered large sums of money (almost on the spot)” when he spoke of the potentials of the “Harry Potter project”¹. Something that is alien to those of us who work in less fashionable subject areas where funding is a constant struggle. Government funded science quickly becomes dominated by a quest for application and technology. In effect we bypass the ethical questions of whether we should do this because it is this that will get funded. Science that is not driven by obvious applications will not get funded.

Is this what we want? Should the humanities and philosophy play a role in helping to determine what research is beneficial for society and so which research receives funding? Should ethical considerations play a part in funding considerations, or should scientific research all be about the devices that we can use? It is certainly something to ponder while sipping on our long blacks.

Answer to the question “what is it that we need that we cannot see or feel? Answer in 1990 – Air, answer in 2000 – Wi-fi (though personally I think maybe this should be the answer in 2015, the given answer of “2000” was still a bit early for widespread wifi).

Further reading and [1]: “The Physics of Invisibility” Martin Beech, New York, Springer, 2012

Arepa and Co, Haggerston

Haggerston Canal

Arepa and Co are on the right hand side of this canal

Edmond Halley (of comet fame) was born in the London district of Haggerston in 1656. More recently, Arepa and Co a Venezuelan cafe located alongside the canal that runs through the district, has just celebrated its first birthday there. This cafe serves a variety of Venezuelan foods including the arepas of the name which are, apparently, a traditional corn cake that can be filled with a variety of fillings (more info here). There are seats both inside the cafe or outside, overlooking the canal. As it was the early afternoon and we’d already had lunch, we decided upon a coffee, a sugar cane lemonade and, to accompany it a plate of Tequenos de Chocolate. These unusual little pancakes filled with chocolate were delightful to enjoy with a cup of coffee and a view over the canal. Sitting back and enjoying this relaxing view, I noticed a tree on the roof of a building on the opposite side of the canal. Hanging on the tree were a number of glass shapes. As the wind blew, the different faces of the shapes caught the Sun. Looking towards these glass shapes, they appeared to change colour as the sunlight was refracted through them. A glinting rainbow array of light fell onto our side of the canal.

The story of the investigation of colour is a great example of how our preconceived ideas can influence the results that we think we see. Up until the seventeenth century, colour was viewed as a property of the surfaces of an object as opposed to “light” which was that which rendered objects visible. Therefore trying to explain how rainbows formed or light scattered from ornaments was a difficult task. Indeed, medieval philosophers (the term ‘scientist’ is a nineteenth century invention), considered that there were only seven colours: Yellow, orange, red, purple, green and black and white.

Prism associated with Isaac Newton

A late C17th prism in the British Museum collection, © Trustees of the British Museum

Work understanding colour as a refracted component of white light started with Marci in his 1648 work Thaumantias (another name for Iris, the Greek goddess of the rainbow) and continued with Newton’s famous experiments with prisms. Newton showed that a glass prism refracted the different colours of light by different amounts (resulting in a spectrum). If two prisms were placed at right angles to each other, the rainbow of light from the first prism recombined into white light emerging from the second. With the change in mindset that this brought about, phenomena such as the rainbow could be more easily explained.

Grecian, Coffee House, London Coffee House

The Devereux pub now stands on the site of the Grecian coffee house, a former meeting place of the Royal Society

Which brings me back to coffee. Back in the eighteenth century cafes (or coffee houses) were not just places to have coffee but places to engage in the latest philosophical, political or scientific discussion and debate. Scientists of the day regularly gave public lectures and demonstrations in coffee houses both as a way of entertainment and of education. One scientist who participated in this was Stephen Demainbray (1710-1782). Demainbray demonstrated Newton’s experiments and theories on colour to a coffee drinking audience. The models that he used to explain the refraction of light are now on display in the Science Museum which is well worth a visit if you are in London. In the present day, there are still cafes and coffee houses that try to do a similar thing (of showing fun science to a coffee drinking audience), although perhaps sadly there are fewer now than there were then. Two movements that are trying to put the science back into coffee houses are Science Cafes and Cafe Scientifique. Although not always held in cafes, both movements have the aim of combining interesting science with a cup of coffee or glass of wine. Somewhat poetically the next Cafe Scientifique in London is to be held, on the 9th December, at the Royal Society. It is poetic because back in the time of Newton, discussions with the Royal Society president (Newton) and other society members took place at the Grecian Coffee House.

Both “Science Cafes” and “Cafe Scientifique” have events worldwide. It is worth taking a look at their websites to see if there is an event near you. Why not pop along and see what you can find out while having a cup of coffee?

 

Sources used:

The Rainbow Bridge, Raymond L Lee, Jr and Alistair B Fraser, Pennsylvania State University Press, 2002

The Nature of Light, Vasco Ronchi, Heinemann, 1970

London Coffee Houses, Bryant Lillywhite, George Allen & Unwin Ltd, 1963