levitation

A coffee balancing act

Coffee Corona

Sometimes you can infer the existence of a thin (white) mist over your coffee by the corona pattern around reflected light fittings.

Clouds of steam hover just above your brew, dancing on the surface in sharp, almost violent, sudden movements. You can see it almost every time you drink a long black, cup of tea or even a glass of hot water. But what on earth is going on?

Back in 2015, a paper by Umeki and others showed that these dancing white mists were levitating water droplets, a common manifestation of something that had been noticed in lab experiments a few years earlier. Hundreds of water droplets, each about 10 μm diameter (the size of the smallest grains in an espresso grind) somehow just hover above the coffee surface. You can read more about that study here. Yet there remain questions. How do the water droplets levitate? What causes those violent movements in the cloud? Can contemplating your coffee help to understand these questions?

To explore what is happening with the white mists, we need to view them in an environment that we can control so as to change one or other of the parameters in the ‘coffee’ and see what happens to the mists. And this is what Alexander Fedorets and co-workers have been doing for a few years now (even before the work of Umeki). What Fedorets has noticed is that when you heat a small area (about 1mm²) of a thin layer of liquid, it is not just possible to create these white mists, you can see the droplets levitating and they form hexagonal patterns of droplets. This is quite astonishing because whereas we are used to solids forming crystals (think of water and snowflakes for example), a formation of liquid droplets in a “self-organised” pattern is an unusual phenomenon.

floating, bouncing drops

You can stabilise much larger droplets of water (up to a couple of mm diameter) by vibrating the water surface. This is a very different phenomenon but is also an interesting effect you can create in your coffee.

Then we can ask, what is it that causes these droplets of water to levitate above the surface? According to a recent paper of Fedorets, the answer is indeed as simple (in the first approximation) as the fact that these droplets are in a delicate balance between being pulled into the coffee by gravity and pushed upwards by a stream of evaporating water molecules. This balance suggests that we can do a ‘back of the envelope’ calculation to estimate the size of the droplets and also to understand what happens when the coffee cools down. We start by thinking about the gravitational pull on the droplet, the force on that is just F↓ = mg (where g is the gravitational acceleration and m is the mass of the droplet) so, if we write this in terms of the density of water, ρ, and the radius, r, of the droplet:

F↓ = ρ (4/3)πr³.g

Similarly, we know how to calculate the upwards force on a particle created by a flow of liquid (steam). It is the same expression as Jean Perrin used to understand the layering of water colour paint in a droplet of water (which is the same as the layering of coffee in a Turkish coffee) and so proved experimentally Einstein and Langevin’s theories of Brownian Motion (which you can read about here). If the steam has a velocity U and the dynamic viscosity of the steam is given by μ, the upwards force given by the steam is:

F↑ = 6πμUr

For the droplet to ‘balance’ (or levitate) above the surface, F↓ = F↑ so with a bit of re-arrangement we get the radius of the droplet as given by:

r = √[9μU/(2ρg)]

Plugging in sensible numbers for μ (2×10^-5 kg/ms) and U (0.1 m/s), and using the density of water (10³ kg/m³) and g = 9.8 m/s² gives a radius for the droplet of 17 μm which fits very well with what is observed.

Rayleigh Benard cells in clouds

The white mists often seem to vanish as if they were sustained by Rayleigh Benard cells in the coffee. Rayleigh Benard cells can also be found in the clouds in the sky, in fact, anywhere where there is convection.
Image shows clouds above the Pacific. Image NASA image by Jeff Schmaltz, LANCE/EOSDIS Rapid Response

But does the expression tell us anything else? Well, the radius is proportional to U; the velocity of the steam. So if you increase the temperature, you should increase the radius of the levitating droplets. This is exactly what is seen. Also, as the temperature of your coffee drops and there is less steam coming off the surface, it will become harder to stabilise these white mists; the mists will disappear as the coffee cools. This is something you can test for yourself: what is the optimum temperature at which to see the white mists (and drink your coffee)?

But the study by Fedorets showed something else. Something quite intriguing and perhaps relevant to your experience. Fedorets had stabilised the droplets on the surface by using an infra red laser and held them into a fixed area by only heating a small region of the liquid. In that sense the study is quite far from our physical experience with a coffee. But what Fedorets noticed was that these stabilised droplets grew with time. As the droplets grew, the bottom of the droplet got closer and closer to the liquid surface until, suddenly, the droplet collapsed into the liquid. This collapse caused a capillary wave on the water surface which is a small wave regulated by the surface tension of the water. And this wave then caused the surrounding droplets to collapse into the liquid interior. Because this happened very quickly (the wave travels at about 1m/s which is equivalent to a slow stroll at 3.6km/h), to us, looking at our coffee, it would appear that a violent storm has momentarily erupted over the surface of the white mists.

As the wavelength of a capillary wave is determined by the surface tension of the liquid, this suggests that if you change the surface tension of the coffee you may change the speed or perhaps the appearance of the collapse of these white mists. You can change the surface tension of your coffee by adding either soap or alcohol to your long black. Umeki did add a surfactant (to reduce the surface tension) and didn’t notice a significant difference to the speed of the wave but maybe other factors (such as temperature) were dominant in that experiment. It certainly seems a good excuse to investigate. Let me know if you experiment with your coffee and if the white mists move faster or slower in your Irish coffee compared with a morning V60, you may want to film the results if you intend to drink the coffee afterwards.

The work of Fedorets and of Umeki were both published under ‘open-access’ meaning that anyone can read them (without paying). You can read Umeki’s study here and Fedoret’s study here.

What haloes and crowns reveal about your coffee

Coffee Corona

Look carefully around the reflected white light. Do you see the rainbow like pattern?

Several weeks ago I had been enjoying some very good black coffee at OJO in Bangsar, KL. As is fairly typical for me, I had been trying to observe the white mists that form just above the coffee. White mists are fascinating, tissue-like clouds that you can often see hovering above the coffee. They form, tear suddenly and then reform into a slightly different pattern. As I was photographing my coffee, I noticed what seemed to be interference patterns on the mists (see picture), just like oil on water, a rainbow-like shimmering over the coffee surface. Yet that explanation did not make sense; interference patterns form because the layer of oil on water has approximately the same thickness as the wavelength of visible light (see more info here). The water droplets that make up the white mists are a good 15 times thicker than the wavelength of light. It is not possible that these mists are producing interference effects, it has to be something else.

Then, last week and back in London, I was walking towards the setting Sun one evening when I saw what looked like a rainbow in a cloud. What caused this and how was it related to what I had seen earlier in my coffee? A short trip to the library later and it was confirmed. What I had seen in the clouds was most likely a Sun-dog. Formed by the refraction of sunlight by ice crystals in the atmosphere, Sun-dogs manifest as bright regions of rainbow. The Sun-dog appeared in cirrus clouds because these are made from the sort of ice crystals that produce brilliant Sun-dogs. These ice crystals are flat and hexagonal so they refract sunlight exactly as does a prism. Just like a prism, red light and blue light will be refracted by differing amounts and so they will appear at different places in the sky. The minimum angle of refraction produces the most intense colouration and, for hexagonal platelets of ice, this occurs at 22º away from the light source.

Sun-dog, Sun dog

A Sun-dog in the clouds to the right of the setting Sun

I do not find degrees a particularly helpful way of thinking about distance but what helped me is that, in terms of the sky, if you hold your outstretched hand out at arms length, the distance from your thumb to the tip of your finger is, approximately, 22º. Hence, if you see a halo around the Sun at about that distance, it is most likely a refraction effect due to ice crystals in the sky and if you see an intense rainbow roughly parallel to the elevation of the Sun, it is very likely to be a Sun-dog.

What does this tell us about the colours in the mists above the coffee? Well, clearly the mists are not made of ice crystals but neither is the ‘rainbow’ colouring as far as 22º from the light source (a light bulb reflected in the coffee). Also, the rainbow is less vivid and, if you look closely, inverted from the rainbow in the clouds. In the cloud, the inner edge of the arc was red and the outer edge blue, in the coffee, the outer edge is more reddish, while the inner is more blue-ish. This is another clue. On the same evening as I had seen the Sun-dog, there was a full moon and around the Moon was a glowing ring, tinged slightly reddish on the outside. The ring was far closer to the Moon than the Sun-dog had been to the Sun. This Moon-ring, and the coffee colouring are the same effect, they are examples of ‘corona’ (literally crown) and they are caused by diffraction of light rather than refraction.

straw, water, glass

It is refraction that makes the straw appear broken in this glass of water.

Refraction we are all quite familiar with, it is the bending of a straw in a glass of water as you look through the glass. Diffraction is a little more tricky, but it is a consequence of how the light moves past an object. It can be understood by thinking about how water waves pass objects in a stream (or by playing with the simulation here). The amount that the wave is diffracted depends on both the size of the object and the wavelength of the wave. As blue light has a much shorter wavelength than red light, the blue will be diffracted by a different amount to the red. If the objects diffracting the light are of a similar size (as water droplets in white mists are going to be) a spectrum, or a rainbow of colour will appear around the light source. The more uniform the droplet size, the more vivid the spectrum in the corona. The thin cloud around the Moon that evening was made up of many different sized droplets and so the rainbow effect was very subtle. In contrast, around the reflection of the light bulb in the coffee, the water droplets in the white mist are a fairly similar size and so the spectrum is more vividly seen.

Seeing rainbow effects in the sky (or in the coffee) therefore gives us many clues as to what is in the sky or indeed, levitating above the coffee. Please do send me any pictures you have of coronae around light source reflections in your coffee, or indeed sun dogs if you are fortunate enough to see them*.

* Sun dogs are in fact apparently fairly common, it is more that we have to be attentive to see them.