kitchen top physics

Cracking pour overs

cracks in a wheat field
Cracks in the soil in a field after a dry spell. But there are many connections between coffee and soil.

Summer this year has so far been quite hot and dry. Perhaps you have seen the grass dying back. Or maybe you have noticed the cracks forming in the soil in your local parks and fields. Such cracking is the result of the very dry weather and hopefully you won’t find it in your coffee, but there is another effect concerning soil compaction that connects to brewing a morning coffee as well as farming it.

It’s about the rain. As each raindrop falls to the Earth, it makes an impact with the soil underneath. While a light drizzle is not going to have that much of an impact, a larger raindrop of diameter say, 5mm, is going to hit the earth at about 9m/s – and that could cause quite a stir. Each impact will shake off smaller sized particles of soil which dislodge and get stuck in the pores between the larger soil particles. So the smaller particles start to ‘clog’ the pores between the soil particles and reduce the ability of water to penetrate into the soil. And although it seems a small effect, the result of this clogging of the pores by the smaller soil particles is to reduce the water permeability of the soil by 200-2000 times*: a soil crust is formed.

lilies on water, rain on a pond, droplets
The impact of a drop? Each rain drop can have a significant effect on the soil surface

This crust not only reduces the amount of water that gets through to the roots (by reducing the soil’s permeability), it also acts as a barrier for seedlings coming up: while many seeds can get through quite strong layers, even Sorghum struggles to push through if it needs pressures of 13-18 Bar to break through this crust*. So even without any farming machinery causing further soil compaction, just the rain is going to affect how additional water goes through the soil and how plants can grow out of it.

We are getting to the coffee bit.

The crust strength is influenced by the number of small (clay-type) particles in the soil. Clay particles are less than 2 microns in diameter which is smaller than the grind size you would find in even a Turkish coffee grind. But if we were to grind very brittle coffee beans (that shattered into many smaller particles as well as the grind size we want), or we were to use a blade grinder leading to a large distribution of grind size in our freshly ground coffee, we may expect to see some effects like this while brewing.

optical microscope image in water
Two coffee grinds compared under a microscope. How does the uniformity of particle size in a grind affect the clogging of a pour over? Magnfied 5x

If we think about a pour over brew (as opposed to an espresso or an immersion type), the initial pouring of water over the grind bed will dislodge any smaller particles in the grind and clog the grind in the same way as the rain on the soil. So if we were grinding way too fine, or using a blade grinder, or had a preference for darkly roasted (more brittle) coffee beans, it is possible that our pour-overs would tend to ‘clog’ more than if we were using a uniform medium grind of more lightly roasted beans. Has anyone experimented with this?

But the second soil connection we may notice as we prepare our pour over is that after our initial pour, as we let the coffee ‘bloom’ and the CO2 bubbles out, we receive a lovely aroma. A wonderful coffee smell as the grind bed continues to out-gas. This may remind us of petrichor, which is that great, and distinctive, smell of rain. And it turns out that petrichor is formed by the rain hitting the soil surface and producing air bubbles as it falls. The air bubbles then burst releasing aerosols from the soil which are so familiar to us as the scent of rain. A similar process to the blooming of the coffee grind. But just as with the coffee grind, as the water continues to fall and particularly if the pour over clogs to leave us with a water layer on the surface of the coffee (or soil), the aroma will reduce (or at least change) as the mechanism producing the smell changes.

bloom on a v60
Blooming petrichor, or should it be coffichor?

On a farm or in a garden, the effect of this soil compaction can be reduced by practises such as mulching. In addition to reducing the impact of individual rain drops on the soil surface, the mulch reduces evaporation of the water from the surface and changes the albedo of the soil. All things that may help coffee farmers to grow healthier coffee plants. In our pour overs, it is probably not a good idea to add any form of mulch! But this does mean that we can experiment more with the grind!

There are many more connections between your coffee and the earth around us, what will you notice?

*Soil Physics, WA Jury and R Horton, Wiley and Sons Publishing, 2004

Latte Art

Latte art scutoid tulip
The physics of bubbles. What links latte art to the shape of cells as an embryo develops?

An odd one out competition: which of the following is not a type of latte art? Tulip, heart, swan or scutoid? You may well ask, “what on earth is a scutoid?” and so identify this as the odd one out and, to some extent you would be right. Scutoids are not a type of latte art. But I would wager that you can still occasionally see them in your coffee.

Twitter can be a great thing and I was recently alerted there to a New York Times article about Karen Uhlenbeck by @Bob_Mat_Phys. Uhlenbeck is a mathematician at the University of Texas who has just won the Abel Prize in mathematics for her work on the maths of bubbles. The article was fascinating in itself but also mentioned in the article was the fact that there may be, on occasion, a connection between a cup of coffee and the cell structures seen in foetal development. And while I’m very well aware of the extraordinary number of connections that can be made between coffee and the science of the everyday world, I’ll admit, that one surprised me.

Metal jug and transparent glass
More bubbles in your coffee. But what determines their shape? And what shape are they?

By this point you may be unsurprised to hear that the connection is made via the scutoids, but what are they? A new type of shape, they were first described in a Nature Communications article about the development of cells as organisms such as fruit flies grew. Scutoids formed as the embryonic cells grew to form tubes or egg shapes. On one surface of the tube the cell was contacting a different number of cells to that which it contacted on the other surface (so perhaps the cell looked like a pentagon on the top and a hexagon on the bottom). In order for the cell to do this, it formed a further triangular face along one side of the cell and it is this cellular shape that is the scutoid.

Where is the connection with a coffee? Well, the amazing thing is that this shape can be the result of the physics that determines the shape of bubbles, in this case when they are confined between two curved surfaces, such as two cylinders. The shape of a bubble is the result of the minimisation of the surface energy of the bubble. So, in free space, the bubble will be spherical but somehow squash bubbles into a box and you can form a cube shaped bubble in the middle of the box. The shapes that form are the result of the minimum surface energy of the bubble surface. Now, if we return to the curved surfaces and the scutoids. The idea is that if there is a single layer of bubbles between two curved surfaces and that these surfaces are then moved away from each other, the bubbles will first resemble prisms and then, as the surfaces are stretched further, some bubbles will form a prism shape but with a triangular surface at one of the bounding walls: a scutoid.

latte art by Mace, Eiffel Tower and hot air balloon
It is astonishing what you can see in a coffee when you look closely enough.

The paper that showed this (published in Philosophical Transactions but you can read the full version here) combined mathematical modelling of the minimisation of surface energy with experiments involving two cylinders and some soap suds. They then photographed the resultant bubble structures. The results suggest that the minimisation of energy (ie. the physics of the bubble shape) could be a first approximation for explaining the cell structures that form in foetal development. But can you see them in your coffee?

You would need a coffee mug or French press and a smaller cylinder that fits neatly inside it. You would then need to form a foam somehow. Soap suds are obvious, some form of milk texturing would be more interesting. You can then look closely and see, can you in fact see scutoids in your latte art?

Coffee Rings: Cultivating a healthy respect for bacteria

coffee ring, ink jet printing, organic electronics

Why does it form a ring?

It is twenty years since Sidney Nagel and colleagues at the University of Chicago started to work on the “Coffee Ring” problem. When spilled coffee dries, it forms rings rather than blobs of dried coffee. Why does it do that? Why doesn’t it just form into a homogeneous mass of brown dried coffee? Surely someone knew the answer to these questions?

Well, it turns out that until 1997 no one had asked these questions. Did we all assume that someone somewhere knew? A bit like those ubiquitous white mists that form on hot drinks, surely someone knew what they were? (They didn’t, the paper looking at those only came out two years ago and is here). Unlike the white mists though, coffee rings are of enormous technological importance. Many of our electronic devices are now printed with electrically conducting ink. As anyone who still writes with a fountain pen may be aware, it is not just coffee that forms ‘coffee rings’. Ink too can form rings as it dries. This is true whether the ink is from a pen or a specially made electrically conducting ink. We need to know how coffee rings form so that we can know how to stop them forming when we print our latest gadgets. This probably helps to explain why Nagel’s paper suggesting a mechanism for coffee ring formation has been cited thousands (>2000) of times since it was published.

More information on the formation of coffee rings (and some experiments that you can do with them on your work top) can be found here. Instead, for today’s Daily Grind, I’d like to focus on how to avoid the coffee ring effect and the fact that bacteria beat us to it. By many years.

There is a bacteria called Pseudomonas aeruginosa (P. aeruginosa for short) that has been subverting the coffee ring effect in order to survive. Although P. aeruginosa is fairly harmless for healthy individuals, it can affect people with compromised immune systems (such as some patients in hospitals). Often water borne, if P. aeruginosa had not found a way around the coffee ring effect, as the water hosting it dried, it would, like the coffee, be forced into a ring on the edge of the drop. Instead, drying water droplets that contain P. aeruginosa deposit the bacteria uniformly across the drop’s footprint, maximising the bacteria’s survival and, unfortunately for us, infection potential.

The bacteria can do this because they produce a surfactant that they inject into the water surrounding them. A surfactant is any substance that reduces the surface tension of a liquid. Soap is a surfactant and can be used to illustrate what the bacteria are doing (but with coffee). At the core of the bacteria’s survival mechanism is something called the Marangoni effect. This is the liquid flow that is caused by a gradient in surface tension; there is a flow of water from a region of lower surface tension to a region of higher surface tension. If we float a coffee bean on a dish of water and then drop some soap behind it, the bean accelerates away from the dripped drop (see video). The soap lowers the surface tension in the area around it causing a flow of water (that carries the bean) away from the soap drop.

If now you can imagine thousands of bacteria in a liquid drop ejecting tiny amounts of surfactant into the drop, you can hopefully see in your mind’s eye that the water flow in the drying droplet is going to get quite turbulent. Lots of little eddies will form as the water flows from areas of high surface tension to areas of low surface tension. These eddies will carry the bacteria with them counteracting the more linear flow from the top of the droplet to the edges (caused by the evaporation of the droplet) that drives the normal coffee ring formation. Consequently, rather than get carried to the edge of the drop, the bacteria are constantly moved around it and so when the drop finally dries, they will be more uniformly spread over the circle of the drop’s footprint.

Incidentally, the addition of a surfactant is one way that electronics can now be printed so as to avoid coffee ring staining effects. However, it is amusing and somewhat thought provoking to consider that the experimentalist bacteria had discovered this long before us.

The impact of water on coffee

lilies on water, rain on a pond, droplets

What is the crater shape produced by falling droplets of water on freshly ground coffee?

Recently there has been considerable discussion about the impact of water on the taste of your coffee. Although this is interesting not only from a chemistry perspective, but also an experimental design and an environmental one, Bean Thinking is probably not the best place to explore such effects of chemistry on coffee taste. If you are interested, there is a recent article about it in Caffeine Magazine, click here. Instead, on Bean Thinking, the idea would be to go a little more fundamental and ask instead what is the impact of water on coffee? What effect does dripping water have on the craters produced in freshly roasted coffee grinds?

You may have noticed craters produced by rain drops on sand or paused while preparing your drip brew to think about the different ways that water percolates through a filter compared to an espresso puck. But have you stopped to consider what determines the shape of the crater that is produced as a falling droplet impacts a loose bed of granular material (such as coffee). Perhaps you have looked at images of the Chicxulub crater on the Yucatan peninsula and wondered about asteroid impacts on the Earth or craters on the Moon but what about something closer to home? What if the impacting object were liquid and the impact surface more sand like? It’s a problem that affects how rain is absorbed by soil as well as the manufacture of many drugs in the pharmaceutical industry. But it is also something that we could experiment with in coffee. Is there a difference between craters formed in espresso pucks compared to those in the coffee in the filter paper of a V60?

bloom on a v60

Bubbles in a V60 filter – but what is the impact of individual drops of water on the dry grains of coffee? The ultimate in slow coffee.

Recently, a study appeared in Physical Review E that investigated the crater shapes produced by water droplets on a bed of dry glass beads (imitating sand). The effect of the impact speed of the water droplet as well as the packing density of the granular bed (sand/coffee) was studied. A high speed camera (10 000fps) was used in combination with a laser to reveal how the shape of the craters changed with time, from the initial impact right through until the crater was stable. The authors came up with a mathematical model to consider how the energy of the falling droplet was distributed between the impacting drop and the sand bed. Does the droplet of water deform first or does the energy of the impact go into displacing the sand and so forming the crater?

Perhaps unsurprisingly, when drops of water fell onto dense beds of sand (think espresso pucks but not quite so packed), the craters produced were quite shallow. It would take a lot of energy to displace the densely packed sand but not quite so much to deform the droplet. But when the drops fell onto looser sand beds (think drip brew coffee) the crater produced formed in two stages and depended on the velocity of impact. A deep crater was formed as the drop first impacted the sand. Then as the camera rolled, the sides of the crater started to avalanche producing much wider craters that had different shapes in profile (from doughnut to pancake type structures). For looser beds of sand, the faster the impacting drop, the wider the final crater. You can read a summary of the study here.

So what would happen for craters produced during making an espresso compared to those produced making a drip brew? A first approximation would be that the espresso coffee is more densely packed, so the craters should be shallower and less wide than those produced in the loose packed filter coffee. However then we need to think that the water used in making espresso is forced through the puck with high energy. In contrast, in drip brewing techniques, the water used has a lower impact energy, (it could be said that the clue is in the name). So the energy of the impact would form larger craters in the espresso pucks and smaller craters in the drip brewers, an opposite expectation from that of the packing densities, which effect wins?

coffee ground in a candle holder

Early experiments with coffee grind craters: There are advantages to working with glass beads and high speed cameras.

But is there anything else? Grind size! Espressos are made using finely ground coffee beans, with a typical “grain size” being about 10μm (0.01mm). Drip brewed coffee is somewhat coarser, a typical medium grind being compared to grains of sand (which vary between 0.05-2mm, 50 – 2000μm but we’d expect ‘medium’ ground coffee to be at the lower end of that). This is fairly similar to the ‘sand’ used in the study in Phys Rev E which used grains of size 70-110 μm. A slightly earlier study had shown how the crater shape depended on grain size for ‘sand’ ranging from 98 to 257 μm. That study had revealed that how the water interacted with the different grain sizes depended in turn on whether those grains were hydrophilic (wettable) or hydrophobic (water proof). It is probably safe to assume that the coffee used in an espresso grind has the same hydrophilic properties as the coffee used in drip brew but even so, we still have those three variables to contend with, packing density, impact energy and grind size. So, happy experimenting! Let’s find out how the impact craters left in coffee change with preparation method. And whatever else, it’s a perfect excuse (if one were really needed) to drink more coffee while slowing down and properly appreciating it.

With thanks to Dr Rianne de Jong for pointing me in some interesting directions (not all of which fitted in this piece) towards the interaction of water with coffee, more coming soon I hope.

 

 

Making a splash

You spilled your coffee, a terrible accident or an opportunity to start noticing?

Why do some droplets splash  while others stay, well, drop like? It turns out that there is some surprising physics at play here. When a drop of water, or coffee, falls from a height and onto a flat surface (such as glass), we are accustomed to seeing the droplet fracture into a type of crown of smaller droplets that form a mess over the surface. Visually spectacular, these splashing droplets have even been made into an art form (here).

Fast frame-rate photography reveals how each micro-droplet breaks away from the splashing drop:

Video taken from Vimeo – “Drop impact on a solid surface”, a review by Josserand and Thoroddsen.

 

So it perhaps surprising to discover that there are many things about this process that we do not yet understand. Firstly, if you reduce the gas pressure that surrounds the drop as it falls, it does not make a splash. In the extreme, this means that if you were to spill your coffee in a vacuum, you would not see the crown-like splashing behaviour that we have come to expect of falling liquids. Rather than splash, a droplet falling in low pressure spreads out on impact as a flattening droplet. This counterintuitive result was first described in a 2005 study (here) that compared the effect on splashing of droplets with different viscosities (methanol, ethanol, 2-propanol) falling through different gasses.

cortado, Brunswick House, everyday physics, coffee cup science

Don’t spill it!
But would a latte splash more or less than a long black?

The authors of the study ruled out the effect of air entrapment surrounding the droplet as it falls as high speed photography had not indicated any air bubbles in the droplet just before impact. Instead they considered that whether a drop splashes on impact – or not – depended on the balance between the surface tension of the falling liquid and the stress on the drop created by the restraining pressure of the surrounding gas. Calculating these stresses led to a second surprising result. Whether a drop splashes on impact or not depends on its viscosity (as well as the gas pressure and the speed of impact). But the surprising bit is that the more viscous the liquid, the greater the splash.

From a common-sense perspective (that may or may not have any bearing on the reality of the situation), an extremely viscous liquid like honey should not splash as much as a less viscous liquid like coffee. This suggests that there is an upper-limit in viscosity to the relation predicted in the 2005 study. After all, although the authors did change the viscosity of the liquids, the range of viscosity they studied was not as great as the difference between coffee and honey. This sounds like a perfect experiment for some kitchen-top science and so if any reader can share the results of their experiments on the relative splashes formed by coffee and honey, I would love to hear of them.

 

Bouncing Coffee

floating, bouncing drops

Water droplets ‘floating’ on a bath of water (actually they bounce rather than float).

Perhaps you remember the video about how to ‘float’ coffee droplets on water posted on the Daily Grind a few weeks ago? The video featured an experiment that you could do at home in which droplets of water (or coffee, or even, if you were feeling adventurous, tea) could be made to stay as spherical droplets on the surface of a shallow dish of water for minutes at a time. Of course there were a few tricks: The water had soap added to it (10ml of soap to 100ml of water) and the shallow dish was on a loudspeaker which was playing music at the time. The whole experiment was very pretty. But hopefully as well as appreciating the aesthetics, you were asking ‘how’ and ‘why’? Why does the addition of soap mean that these globules of liquid appear to float on the liquid surface? And is the rumour you have heard about a connection with quantum physics true?

Well it turns out that people have known about these floating droplets for over a hundred years but why they behave as they do is still being investigated. It is another case of cutting-edge science appearing in your coffee cup*. So it’s worth taking a look at what is going on and why we needed to add soap and vibration for the droplets to remain stable on the water surface.

lilies on water, rain on a pond, droplets

When it rains, the rain drops don’t float on the pond

It seems to appeal to common sense and to everyday experience that if we drop a droplet onto a bath of water, the droplet will merge with the water and become part of the bath. After all, when we bring two drops that we have dripped on a table close to each other, at a certain distance between the two drops, they appear to touch and then rapidly merge into one big droplet (try it). And when it rains onto a pond, we don’t see lots of spherical droplets hovering over the surface of the pond! We know that it is the attractive van der Waals forces that bring the two drops together and then the effects of surface tension that minimise the surface area of the drops so that they become one big drop. So how is it that we can get a droplet to remain, as a droplet, on the surface of a bath of water?

How to bounce water droplets on a water surface

It could be said that the answer can be pulled out of thin air: Before the drops can merge, the air that separates them has to escape from the area between the droplet and the water bath. If the droplet can somehow be made to bounce back upwards before the air separating the droplet from the bath becomes thin enough for the two liquids to combine, the air could be made into a cushion to keep pushing the droplet upwards. This is why the experiment needs to be done with a vibrating dish of water, each time the surface vibrates upwards it is providing the drop with an acceleration upwards that overcomes gravity, like a miniature trampoline: The droplet is not floating, it is bouncing.

So why soap? We all know that the addition of soap decreases the surface tension of the water. But that is not why the addition of soap helps to stabilise the drops in this instance. No, soap has another effect and that is to increase the surface viscosity (and surface elasticity) of the water. Think about the air between the droplet and the dish. As the droplet bounces down (ie. the distance between droplet and water becomes a minimum), the air gets squeezed out of the layer between the droplet and the bath. On the other hand, as the droplet reaches its peak height, air will rush into the gap between the drop and the bath. If the liquid is not very viscous (eg. water), as the air rushes in (or gets squeezed out), it will combine with the liquid and form a turbulent layer on the surface of the droplet. If the viscosity is increased, the air cannot ‘entrain’ the liquid as the droplet bounces and so the drop keeps its shape more easily and is more stable. Soap increases the surface viscosity of the droplet and so helps with this effect. However soap also increases the surface elasticity and makes it harder for the air to flow out of the layer separating the drop from the bath. It is because soap does multiple things to the water (or coffee) that more recent studies have focussed on liquids with controllable viscosity but minimal surfactant effects, i.e. silicone oils. It is just that if you want it to work with coffee, it is easier to add the soap to get the experiment to work.

An “un-cut” video of coffee on water shows how tricky it can be to actually get these drops to be stable on the surface of the water.

Which leaves the quantum link. The experiment shown in the videos show single droplets (or droplet patterns) stabilised by vibrations caused by music. If instead of music you use fixed frequencies to excite resonances through the speakers, it is possible to get the droplet to resonate in a controlled way and, at a certain point, it will move. As the droplet moves, it appears to be guided by the vibrations of the liquid underneath the drop, it is a particle guided by a ‘pilot wave’. It turns out that such walking droplets show behaviour reminiscent of the ‘wave particle duality‘ found in quantum physics where particles (such as electrons and other sub-atomic particles) can be described both as particles and as waves. You can find a video describing the similarities between these bouncing droplets and quantum effects here.

 

* Ok, so you may not want to add soap to your coffee to see this effect but actually I first observed it in a milky tea. Adding milk to the coffee/tea would increase its viscosity which makes the observation of the bouncing droplets more likely. The ‘milk’ used in the video was actually soya milk which did not appear to increase the viscosity sufficiently to allow the droplets to bounce on the surface without soap.

Coffee baubles

resonating coffee

Not the best image of a resonating coffee but you hopefully get the idea

Most people, at some point in their lives, must have pushed a take-away coffee cup across a table and watched as patterns form on the liquid surface. Sometimes these patterns seem to stand still, we’d say that they form ‘resonances’. On even rarer occasions, on dragging your cup across the surface, you may have seen coffee droplets jump out of the coffee and then dance on the coffee surface for a couple of seconds as the liquid vibrates.

Today’s Daily Grind investigates these ‘floating droplets’ with an experiment in time for Christmas: Decorate your coffee with coffee baubles.

To make these droplets form on your coffee in a controllable way you will need a few bits of equipment:

  1. A couple of loud-speakers with the woofers exposed
  2. Some sort of liquid soap (washing up liquid, hand soap, soap for hand washing clothes etc)
  3. Some water (or coffee but you will do horrible things to it)
  4. A shallow dish (I used the bottom of an old yoghurt pot)
  5. A “dropper”, a pipette or syringe would be ideal, a straw will probably work.

You can do this completely systematically, in which case you’ll also need a signal generator to provide a fixed frequency output to the speakers (I used “ScorpionZZZ’s Lab, Signal Generator Lite for iPhone). Or you can just go straight to the fun bit which is to make these droplets dance to music. It’s Christmas so it’s entirely up to you!

floating drops, resonances, speakers, kitchen top science

Balance a shallow dish on the woofer of a speaker. A roll of sellotape can be used to couple the vibrations of the speaker to the dish if necessary.

Balance your speakers on a flat surface and put the shallow dish so that it sits in good contact with the woofer. Because my dish was ever so slightly larger than the vibrating bit of the speaker, I ‘coupled’ the speaker to the dish with a roll of sellotape. Mix 10ml of soap with 100ml of water (this does not have to be exact but you may want to investigate just how much/little soap you can get away with). If you are using coffee rather than water, you will need to mix 10ml soap with 100ml coffee.

Pour about half the soapy-water into the dish and then turn the speakers on. If you are using a signal generator, watch what happens as you sweep the frequency from 10-200 Hz. Now, either choose a frequency which shows a nice resonance pattern on the water, or start playing the music through the speakers. Music with a good beat will work well (I watched drops dance to Tiesto, Blondie, and Josh Woodward’s “coffee”).

Drip a drop of the remaining soapy-water onto the resonating surface. A video of my playing with these droplets can be seen above. Although not all the drops will float, it is fairly easy to start to form patterns of flowers or rows of droplets and then it’s worth just playing.  How big a droplet can be made to float without collapsing? How many minutes can you get a drop to last before it sinks? What happens if you combine a drop of black (soapy) coffee with a drop of milky (soapy) coffee?

Have fun, and please do share your videos and photos of your experiments with me on Facebook or Twitter.

Disclaimers & Credits:

No coffee was wasted in the making of this video. A very good coffee from Roasting House was thoroughly enjoyed before the remnants were diluted and mixed with soap.

Inspiration & experimental details taken from Jearl Walker’s great article “The Amateur Scientist” in Scientific American, p. 151 (1978).