Categories
Uncategorized

A first coffee & science evening at Amoret

intro board for Amoret evening
An evening of coffee and science at Amoret Coffee in Notting Hill

A couple of weeks ago we hosted a first “coffee and science” evening at Amoret Coffee in Notting Hill. Designed to explore a physics concept that you could notice in your coffee cup with people from a diverse range of backgrounds, in some ways, the evening itself was an experiment. Would anyone turn up? Would the experiments be interesting? Was I just making my coffee badly?

This last question referred to the fact that the connection for that particular evening had been the dancing drops that skirt across the surface of a V60 (or other pour over) as you prepare your coffee. I had noticed these a couple of years ago but at that point had not appreciated their significance. To answer that question, we were prepared two excellent pour overs by people who really knew what they were doing. And we were spoiled for the coffee which was a recently roasted Nicaraguan washed coffee grown by the Baltodano family who also came along for the evening. The two pour overs were prepared very slightly differently and produced drinks that highlighted different aspects of the flavour of the coffee (though sadly I only managed to try one). This led to a fair amount of discussion amongst those present, not just about which they preferred, but how the preparation affected and highlighted different flavour notes.

Pour overs at Amoret
Preparing pour overs by two (slightly) different techniques. But would we see the dancing drops? (Yes x 2)

The pour overs showed that the dancing drops were there (in both techniques) when coffee was made properly. This was a relief for me! But did they also supply a clue as to how these drops were able to survive, as liquid drops, on the surface of the coffee?

Ordinarily, when a drop drips into a bath of liquid, you would expect it to quickly coalesce with the liquid bath. Once the drop gets close enough to the surface, the van der Waals forces in the drop and the liquid bath will overcome the surface tension effects and the drop will be subsumed into the liquid. If the drop does not coalesce, but instead appears to ‘float’ on the surface there must be a reason.

The first reason that the drop may survive for a while on the surface is because there is a temperature difference between the drop and the bath. This sets up stresses within the drop that pull air into the region between the drop and the bath and keep the drop ‘floating’ for a little while.

Secondly, if you increase the surface elasticity of the droplet, you can stabilise it on the liquid bath for longer. This is usually done by adding soap to the water, not something we did with the V60. But could there be an effect of the coffee oils or some other aspect of coffee chemistry that is keeping these droplets afloat?

Experiments at Amoret
You can see a drop almost ‘sitting’ on the surface of the water here (circled). This particular drop was stabilised for about 15 minutes. I think if you look carefully you can see a ripple pattern around the droplet in addition to the standing wave pattern on the surface of the water caused by the loud speaker underneath (indicated by the red arrow).

Lastly, if you vibrate the surface of the liquid bath, you can create conditions whereby the droplet ‘bounces’ on a cushion of air on the bath. It was interesting, that in the preparation of both pour overs at Amoret that evening, the times that we observed the dancing drops coincided with those times that the pour over was dripping into the coffee bath, causing a noticeable ripple on the surface.

This last condition was the subject of an experiment in the corner of the upper room at Amoret where we used a loud speaker to generate vibrations to two different liquid baths (water and soap water for example) to see if we could obtain stable drops on the surface. Astonishingly, some of the participants on that Tuesday managed to keep a droplet stable for about 15 minutes, you can see their droplet in the photo. The photo is interesting because if you look closely, not only can you see the wave on the bath of water caused by the vibration of the speaker, but you can also see a circular ripple pattern around the droplet. Is that the ripple caused by the droplet’s bounce?

Conversations led on to the fact that these drops were not just seen in pour overs but could occasionally be seen in espressos too. I’m definitely looking forward to the video of that one. While we also got to discuss the importance of different parameters on the stability of the drops – it turns out droplet diameter, as well as the forcing amplitude (which translates to, how loud you have the volume on the loud speakers) are key parameters that affect the behaviour of the drop, something that has been pointed out elsewhere.

V60 droplet floating bouncing sitting on coffee
A drop in-situ

The evening also emphasised just how much we have to talk to each other about! One topic that kept coming up was fermentation, specifically with how the coffee cherries are processed. Hopefully this could become the subject of a future conversation.

Future events are planned (in theory but not yet in practise) and so if you’d like to make sure you hear about them, you can sign up to the Bean Thinking events list here. Also, if you didn’t get chance to take part in the evening but would like to continue the discussion and maybe add your videos & comments about the droplets, you can sign up to the Virtual Coffee House which will be discussing this topic (until the next coffee & science evening).

Categories
Uncategorized

Pour over science

floating, bouncing drops
How do you stabilise droplets of liquid water (or coffee) on a bath of water? And how long can you keep them on the surface?

On the 11th June, 2019 that is, in just under two weeks, we are going to try something exciting. Amoret Coffee in Notting Hill has offered to host the first ever “Bean Thinking’s evening of coffee & science”.

The idea behind what will (hopefully) become a series of evenings is to host a space for discussion and observation, exploring the physics within a coffee cup. On the 11th, we’ll be looking particularly at the phenomenon of “walking” droplets of coffee. These droplets can move across the surface of a cup of coffee and exist for many minutes (even days) if the conditions are right. And the conditions are fairly easy to create: we’ll be creating several such ‘walkers’ in the spacious upstairs area of Amoret’s Notting Hill branch that people can play with.

You can see such drops in your coffee in the morning. But what connects them to an early idea in quantum mechanics?

Although it takes the creation of certain conditions to achieve long-lasting droplets, you can often see them as you prepare a V60 pour over or even when dragging your (single-use) take-away cup over the surface of a table to create resonances on the surface of the cup. They crop up quite frequently, but why are they there at all and why do some last longer than others?

In addition to exploring these questions experimentally, we’ll also be discussing why these droplets sometimes ‘walk’ across the surface of the coffee and how this relates to an early interpretation of the phenomenon of wave-particle duality in quantum physics. How does something that you can sometimes see while brewing your coffee in the morning relate to the idea that fundamental particles such as the electron behave both as particle and wave? And what does this mean anyway?

It is hoped that future evenings will cover other topics such as climate change and coffee stains, I also hope that we will be lucky enough to have some of the coffee farmers that Amoret has direct-trade relationships with in order to explore these connections further. But, that is in the future, this time we are sticking with the fundamentals!

coffee at Watch House
There’s a lot of physics in a coffee. What do you see? Find out more at Amoret Coffee, 11th June 2019 or sign up to our events list.

So, if you are in London on the 11th June and would like to explore some physics in your coffee (or some coffee with your physics), please do come along to Amoret, from 5pm, for an evening of conversation and poring over science. We will be keeping people informed of plans for the evening (and for future evenings) via our events mailing list which you can sign up to here, or you can follow our progress on our Facebook events page here. Meanwhile, it would be helpful for planning reasons if you could let us know if you are coming either by signing up on Facebook or by emailing us. Looking forward to meeting some of you on the 11th.

Categories
Coffee Roasters Observations

An effective medium for coffee roasting?

coffee bowl pour over
How would you measure the moisture content of a coffee bean?

Recently I had the pleasure of a tour of Amoret coffee in Notting Hill. In addition to discussing an upcoming event that Amoret are kindly hosting (an evening of coffee physics, sign up to the events list to find out more), it was great to see the coffee roaster that is installed there. Fascinating, with what looks to be a really interesting series of coffees lined up ready to roast. And in the course of all this, we came upon the moisture meter, which got me thinking.

Measuring the water content of green (and then roasted) coffee beans is quite critical to gaining an understanding of your roasting process apparently. Sitting on the shelf next to the roaster at Amoret, a small box contained an instrument designed for measuring exactly this. Although it looks as if it is a giant ice cream scoop with a central pillar in the middle, it is actually designed to measure the water content of the coffee beans capacitively. How does it work and, knowing how it works, can we make any predictions as to anomalous results that it may occasionally provide?

The simplest style of capacitor consists of two metallic plates with a gap between them. The capacitance changes depending on the size of the metallic plates, the distance between them and, crucially for this subject, the material that fills the space between the plates. When you apply an electric field between the two plates, the electric moments of the material within the capacitor will tend to align with the electric field. Different materials will react differently depending on their “polarisability”. You only have to think about how a stream of water reacts to a statically charged balloon to see why.

Pulp, Papa Palheta KL
Electrical boxes in Pulp by Papa Palheta KL. The moisture meter at Amoret is much smaller than these old boxes at this ex-printing works.

What this means in practise is that a capacitor formed of plates filled with water will have a different capacitance to the same capacitor filled with air. We say that the ‘permittivity’ of the air is different from the ‘permittivity’ of the water. Measuring the capacitance tells us the permittivity of the material between the plates and so whether the capacitor is filled with air or water. Now fairly obviously, it’s not quite as simple as this because a coffee bean is neither air nor fully water and the moisture meter is not two parallel plates. But in terms of the physics of the measurement, the shape doesn’t really matter here while another bit of physics called “effective medium” theory helps us with the fact that the bean is neither fully air nor fully water. Effective medium theory tells us that the relative permittivity of the mixture is simply proportional to the sum of the individual contributions from the polarisability of each set of molecules. So, merely changing the number of water molecules between the plates will change the capacitance. By knowing what the contribution of the dry beans are, we can calculate the moisture content of the coffee beans as a percentage. Or at least, the instrument can do this calculation internally and provide you with a number on the display.

But. This is what got me thinking about the measurements of the coffee at Amoret. Coffee beans come in a range of sizes and shapes, as you can see by taking a look at the online selection at Amoret (here). Some of these coffees are small, tending towards a more spherical shape while some are significantly larger and more conventionally bean shaped. Is it obvious that the moisture content measured for different coffees is directly comparable? This is not to diminish the use of the moisture meter. As a comparative tool to measure before and after roasting for example, it should be a fairly good indicator. But what should we expect for the absolute accuracy of the instrument? Is a 16% moisture content measured in a small bean really equal to a 16% moisture content measured in a big bean?

At first sight it may seem a silly question, after all, the moisture content is expressed as a percentage; why should size matter? But perhaps we could have a little further think about this. The moisture meter will be optimised for a dense packing of coffee beans. So if we filled it with small beans such that there were very few air gaps between the beans, we would expect a fairly accurate moisture content measurement. If on the other hand, the beans were larger such that there were quite a lot of air gaps between the beans, the actual volume fraction of water molecules in the meter would be reduced (16% of 100% full is greater than 16% of 90% full). And as the capacitance is directly related to the number of water molecules in the sample, the water content that was measured would be less than the true value in each individual bean. So this leads to my first question for roasters using capacitive moisture meters:

  • Do your large beans, that don’t pack well into the moisture meter, often show lower moisture contents than your smaller beans?

variables grind size, pour rate, pour vorticity
Coffee roasting is part-science, part-art and requires great skill and attention. But can thinking about a little extra physics help to understand some of what goes on with the process?

A second point is slightly more subtle. Consider that I had two beans of equal moisture content (%). But one of those beans packs more fully into the moisture meter than the other larger, more irregularly shaped bean. On roasting these beans, they both lost the same volume fraction of water so, say, they went from 16% to 12% water content on roasting. Would both beans show that they had lost the same amount of water?

We could start by thinking about packing these beans into the meter. The one that was densely packed would show a moisture content that was close to the real value (in our example 16%).  The one that was less densely packed however would have a lower volume fraction of water and so show a lower water content. If we assume that the beans filled 90% of the space, the percentage that we measure would be 16% of 90% = 14.4%. On roasting, the two beans are again loaded into the meter and again the densely packed one will show a moisture content close to the real value (in our example 12%). The loosely packed one will show a moisture reading of 12% of 90% of the volume which is 10.8%. Crucially, if we are looking at moisture difference, the densely packed bean will appear to have lost more water (16% – 12% = 4%) than the loosely packed bean (14.4% – 10.8% = 3.6%). Which leads to my second question for roasters:

  • Do small beans that pack well into the moisture meter appear to lose more water for an optimised roasting profile than your larger, less densely packed beans?

Clearly, different beans will have different moisture contents anyway and so it may be difficult to discern any pattern between two specific coffees. The moisture readings may genuinely reflect the fact that the smaller beans have higher water content or vice versa. And also obviously, the measured moisture content is only one part of determining a successful roast profile. However the question is one of statistics. On average, do your larger, less well packed beans have a moisture level lower than you expect? And on average, do they seem to lose less water (measured capacitively) on roasting?

I’d be fascinated to hear your thoughts, here, on Twitter or Facebook.

Categories
General Home experiments Observations slow Tea

Coffee and cream baubles – not just for Christmas

floating, bouncing drops
Drops of water can be stable on the water’s surface for many minutes if you put the water on a loudspeaker, more info on how to create these at home here.

You may have noticed them before: balls of liquid dancing on the surface of your coffee (or tea) that seem to last for ages before being absorbed into the drink? Perhaps you have added milk to your coffee and noticed that it took some time before the milk entered into the brew?

It turns out, there’s some very interesting physics that is happening whenever you add milk to your tea or when you are preparing a pour-over. It can link coffee to wine and to quantum mechanics. It is worth taking a closer look at these drops.

You may remember that you could use a loud speaker to make droplets of coffee bounce on a cup of the same. The vibrations in the cup meant that the air between the droplet and the drink never got squeezed out of the space between them. So, rather than coalesce, the drop jumped up and down on the coffee surface before finally disappearing under. This type of bouncing bauble has been shown to behave in similar ways to quantum particles in wave-particle duality. An analogue of quantum physics in the macroscopic droplets on the surface of your drink.

But that type of bauble required the use of a loud speaker (or some similar way of generating vibrations on the surface of the coffee). What if you could ‘bounce’ a drop of coffee on a cup of coffee without any external props like speakers? Well, it turns out that you can. In November 2017 a group of researchers showed how a temperature difference between a drop falling into a drink and the drink itself could result in the drop appearing to float on the surface of the drink for many seconds. The obvious example was cold milk into a cup of coffee (or tea). But I think that it may also happen in a V60 when you prepare a pour over, more on that below.

science in a V60
Bubbles of liquid dancing on the surface of a brewing coffee.

The idea is quite simple. If there is a temperature difference between the drop and the coffee, when the drop approaches the coffee, there will be thermal gradients across the drop/cup system. Surface tension is temperature dependent: the higher the temperature, the weaker the surface tension. Differences in surface tension across the surface of a liquid result in compensating liquid flows (one of the best places to see this is in a glass of wine, but there’s also a great party-trick experiment you can do to demonstrate it which is here). So, because there is a temperature difference across the surface area of the droplet (owing to the difference between the droplet and the cup), there will be liquid flows set up within the drop. These flows are like circulating vortices which draw the surrounding air into the gap between the drop and the cup and so prevent the existing air between the drop and the cup from escaping. If the air has nowhere to escape to, the drop can’t merge with the drink, in fact it ‘levitates’ for a number of seconds.

The authors suggest that this is a reason that you can often see rain drops staying on the top of puddles or ponds before being subsumed into the water, or why you can see the cream (or milk) stay as globules on the surface of your coffee (or tea). And so I wonder, could this also be the explanation for an odd phenomenon that I sometimes notice while brewing coffee in my V60. Perhaps you have seen this too? After some time, the new drops of filtered coffee impacting on the surface skit along to the edge of the jug. They stay as balls of coffee on the coffee’s surface for quite some time before becoming part of the brew. You can see a photo of some of these droplets above. Initially I thought that this was because the surface of the coffee had started to vibrate with the impacting droplets. But it is also possible that it could be this temperature effect. As the (brewed) coffee in the jug would be cooler than the water dripping into it from the filter, there would be a temperature difference between the droplet and the coffee but the reverse of the milk-coffee situation. The drop would be warmer than the coffee it’s dripping into. The authors of the study suggested that it was the magnitude of the temperature difference that was the key, not the sign of the temperature difference. So that would fit with the V60 observations seen previously. However how would you show which effect (vibration or temperature difference) is responsible for the behaviour?

Enjoy playing with your tea, coffee and V60s. Do let me know the results of your experiments. Is it a vibration thing or does the temperature difference have to be there to begin with? Let me know what you think is going on.

I am also grateful to Amoret Coffee for alerting me to this story in the first place through Twitter. If you come across some interesting coffee-science, please let me know, either here in the comments section (moderated, please be patient), or on Twitter or Facebook.