To read this post it will help if you have a cup of lovely, hot, freshly prepared coffee or tea with you.

Got it? Ok, let’s begin.

A few weeks ago, there was a talk given by Prof. Paul Williams of the University of Reading about the Mathematics of turbulence and climate change. An entertaining talk about the importance of, and the effort of comprehension required to, use mathematics in order to understand climate change. There were several thought provoking comments through the talk that demanded further reflection. But one, almost throw-away comment has been bugging me since. Although I’ve forgotten the exact words, they went along the lines of

*Of course mostly we think about the impact of climate change on the weather, after all, we live in the bottom few metres of the atmosphere and so that is what mostly affects us. What I would like to talk about is the effect of climate change on airplane turbulence…*

The bottom few metres of the atmosphere? It’s true. The bit we’re most experienced with is just a tiny portion of it. It’s about perspective. To us, it seems the atmosphere is very big, we pump all sorts of exhaust fumes into it and they disappear. We have expressions such as “the sky is the limit” that suggests that the atmosphere is a huge volume of gas. We all know it is not *really* limitless, but day to day, on our human scale, it seems enormous.

Now the mathematics that Prof Williams uses to calculate the effect of changing temperature and carbon dioxide levels on the jet stream (and consequently the turbulence felt by planes) is way beyond the sort of back of the envelope calculation that we can do with a cup of tea (or coffee). Understandably, to even start to comprehend these mathematical models requires years of training in maths and physics. However, assuming that we are not ourselves atmospheric physicists, there are things that we can do to help us to see our atmosphere in a more realistic way. And this is where your coffee comes in.

Take a close look at that coffee. Assuming it is not cold brew, hopefully your coffee or tea is still fairly warm. Watch the surface of the coffee. You may start to see movement such as convection in the mug, perhaps you can see a film of oil on the surface. But do you see something else? In very hot tea or coffee, you should be able to see what appear as white mists hovering over the surface of the cup*. It is easy to miss them, but as you watch, cracks suddenly appear in the mists and then there is a re-organisation of them which allows you to start to see them dancing over the surface of your drink*.

These mists are the result of the levitation of many thousands of droplets of water just above the surface of the coffee. I have written about them elsewhere. No one knows quite how they levitate above the surface, but what is known is that they are at a distance of up to 100 μm (0.1mm) from the surface of the coffee.

Let’s construct a scale model of our coffee as the Earth and its atmosphere. These mists can then do a fairly good job of representing the atmosphere with its drifting clouds. So, assuming that the mists are the atmosphere and the coffee is the Earth (on the same scale), what size of coffee would you have to have? Would you be drinking:

a) an espresso

b) a long black

c) a venti

d) a ristretto

Think you know the answer? Let’s work it out with a “back of the envelope” calculation. The easy bit is deciding the radius of the Earth, it’s just under 6400 km, our first problem comes with the estimate of the thickness of the atmosphere. There are several layers in the atmosphere. The one that we are most familiar with, the one closest to us is the troposphere. This extends for the first 16 km above the surface of the Earth (though this varies with latitude, it is only 8 km at the poles). Most of our weather happens in this region and it is also the layer of the atmosphere that planes fly in. Above the troposphere is the stratosphere which extends until about 50 km. Beyond that, things get very rarified indeed though the boundary between our atmosphere and “space” does not happen for several hundred km (indeed, the orbit of the International Space Station is in this bit of our extended atmosphere).

As we are mostly concerned with the weather (and airplane flight etc) though, it seems sensible to define the atmosphere height to be the top of the troposphere. After all, most of us will tend to think that the Space Station is in, well, space. This definition is further justified by the fact that about 75% of the mass of the atmosphere is found within this region (the atmosphere gets thinner as you go higher).

What size coffee would we be drinking if the white mists (0.1 mm above the coffee surface) represent the 16 km of the Earth’s atmosphere? We’ll call the coffee height, *hc*. Our first step is quite easy, we can just use the ratios of the heights to calculate the coffee size:

(height of troposphere)/(radius of Earth) = (white mist height)/(height of coffee)

A bit of rearrangement:

height of coffee = (white mist height)*(radius of Earth)/(height of troposphere)

*hc* = (0.1) * (6400)/16

*hc* = 40 mm (4cm)

So for the mists to represent the atmosphere in your coffee, you would need to be drinking a 4cm tall coffee which is probably a smallish long black. I would leave it to you to calculate the coffee size for the atmosphere defined as outer space (beyond the orbit of the International Space Station). But perhaps this perspective gives us another way of looking at our atmosphere. Vast indeed, but fragile too.

*As I was writing this, I had a warm, very drinkable, cup of coffee but it wasn’t steaming and so showed no white mists over the surface. The mists are best seen in freshly made, very hot drinks.

Awesome 🙂

Thanks! 😉