Tea

Noticing at Artisan, Ealing

coffee Artisan Ealing

A good coffee is a solid foundation for any afternoon’s noticing.

A cafe-physics review with a difference. In that, it’s not so much a review as an invitation. What do you notice in a café?

Last week, I had the opportunity to try Artisan’s Ealing branch. Although I had found a lot to notice on my previous visit to the East Sheen branch, I had a very specific reason for visiting the Ealing location of this small chain of four cafés. The coffee (espresso) was reliably good. Smooth and drinkable in a friendly atmosphere. Just as with the café in East Sheen, there were a good selection of edibles at the counter and plenty to notice. The light shades were immediately outstanding as something to notice while a framed ‘hole in the wall’ provided a conversation point. The café was very busy and while there was plenty of seating with many tables, we were still lucky to have got a table for two near the back. Behind us there was a lesson going on in the coffee school while on the wall was the calendar for the space booking downstairs. And it was this that I had come here for.

A couple of months ago, Artisan announced that this space would be available to rent to provide a friendly space (with coffee) for the meetings of local small businesses or charities. This stayed in the back of my mind for a while as it came about at roughly the same time as an idea for Bean Thinking.

Lampshades at Artisan Ealing

First the obvious. Immediately striking, these lampshades could provide several avenues for thought.

There are a couple of us who are interested in meeting, about once a month, to discuss science. As ‘science’ is quite a big subject, we thought we would limit it to science that is associated with coffee or with the café at which we are meeting. Perhaps readers of this website may realise that this is not such a restriction, it is quite easy to connect coffee to the cosmic microwave background radiation of the Universe or to chromatography and analytical chemistry. If we were to meet in a location such as Artisan, there should be plenty more food for thoughts. The lampshades prompted me to consider what made substances opaque or transparent? Where is the link to coffee and methods for measuring the coffee extraction? The hole in the wall suggested thoughts about the algorithms behind cash machines. I’m sure that there is plenty more to notice if we take the time to see it.

And so this is an invitation. Would you like to join us in exploring what we each notice about the science of our surroundings? The plan would be to meet once a month, probably starting late January 2019 or early February (date and location to be confirmed). An afternoon on the weekend is probably better than an evening and we’d probably stay for an hour or two. You do not have to be a practising scientist to come along indeed, it would be great if we could have people from a variety of walks of life. The idea is not (necessarily) to answer scientific questions that we each may have but instead to explore the science behind the questions, to find the connections that form our ideas of the universe. To really notice our surroundings and our coffees (tea drinkers would also be welcome). As a consequence of this, mobile phones/laptops etc. will be discouraged during the afternoon. We’d like to notice things around us and not be distracted by what a search engine suggests about it; if we think a search engine could help us, we’ll use it after we’ve left and come back the following month to discuss the issues further. So, if you are curious, would like to explore what you notice and can tolerate keeping your phone on silent and in your pocket for an afternoon, please do come along, it would be great to meet some of you.

menus and lampshades in Artisan

You may like to look more closely at this photo. How are the menus supported? What does that tell us about the history of science?

In order to understand whether there would be any interest in this idea and to hear your input about the format, content, location, time etc. I have set up a mailing list for these cafe-science-spaces. Please do sign up to the mailing list to hear the latest announcements concerning these events and also to email me back to contribute your opinion. You can sign up to the mailing list using the sign up form below. Alternatively, if you don’t want to sign up to the mailing list but do want to hear more, I will be advertising the events on Twitter and Facebook so please do feel free to follow me there.

 

Please enter your email address here if you would like to hear about future Bean Thinking events.

 

A post in need of a Curator(s) Coffee, Fitzrovia

espresso Curators

A deliciously intense and fruity espresso from the ‘specials’ menu at Curators Coffee.

Curators Coffee in Margaret St in Fitzrovia has been there for years. A great location just off of Oxford St, with plenty of seating and good coffee, and so it is perfect to pop into, unless you are like me and avoid the Oxford St area as much as possible. Which perhaps explains the rarity of my visits. I first popped into Curators Coffee a couple of years back (before the laws on allergen information came in) when I remember enjoying a lovely long black but couldn’t have a cake because the people behind the counter that day couldn’t tell me which (if any) cakes contained nuts. At the time, I sat upstairs and noticed the graphene type arrangement of hexagons around the back of the space and the Bramah’s 300 years of coffee makers book in a rack at the back. I had wanted to return to properly cafe-physics review the place at a later date (and try the cake) but circumstances (and Oxford St avoidance) meant that I never got round to it. Until very recently.

This time, I noticed that there were three single origin coffees available to try as espresso. Glancing at the tasting notes it was a fairly quick decision: “chocolate”. And although this time I had just had lunch and so passed on the cake, it appears that the espresso choices regularly rotate, offering an incentive to come back again and try something new. Although the café is quite large, with plenty of seating, it seems that it is also very popular. And so there were no spaces remaining upstairs. Fortunately, there were more seats downstairs and so, taking our table number with us, we made our way down the stairs and found a table at the window, as if it was waiting for us.

UFO in Curators Coffee Fitzrovia

A UFO reflected in the window? Why? What? Why (again)? It is small details such as this that reward you as you put down your smart phone and notice your surroundings.

Perhaps it is obvious that a café called Curators should have art work adorning the walls. That, and the spotlights that highlighted the work immediately caught our interest, (although it was odd to see that one of the rows of spotlights was almost devoid of bulbs). The exhibition downstairs seemed to have a tilt towards street art and a couple of decorated aerosol cans were on the windowsill priced at £15 each. Was this the time to consider why an aerosol gets cooler as you spray the walls with it?

Outside the window, a staircase leading up to the street outside had railings in straight lines leading up towards a blue sky. Inside, a space craft was reflected in the window.

Indeed, on checking again, there was a spacecraft, like a cartoon of a stereotypical little UFO, drawn onto the wall behind my accomplice’s head and reflected in the window next to it. What could it mean? Regardless of whether some UFO incidents are associated with visitors from other planets, there are a large number of scientific thought trains we can take when considering a UFO reflected in a window. To start with, how likely is it that we are alone in the universe or that there are many other intelligent life forms in other planetary systems?

The question has been answered on the basis of probability for many years. But recently, we have been finding more planets orbiting stars and crucially, more planets that are in the ‘habitable’ zone around other stars. Assuming that life elsewhere needs similar conditions to the earth’s in order to thrive, the idea of life elsewhere is becoming increasingly real.

canali Curators Coffee

If you see straight lines such as this, it is fairly sensible to infer that they were built by an intelligent life-form. Can you see canals on Mars?

Closer to home, there were even suggestions that Mars may support flowing water, thought to be a host for bacteria based life. And although these interpretations of the flow patterns observed on the Martian surface have more recently been contested (could they instead be flowing sand?), we continue to send probes (such as the Insight probe that landed recently) to the red planet to investigate its geology. Did Mars once host life?  Mars of course has a resonance in science fiction for being the planet hosting extra-terrestrial life. HG Wells imagined the Martians landing just south of London, and eventually being killed off by exposure to bacteria on earth that they had not experienced in their Martian habitat. Could life on Mars suggest a (tenuous) further link to this café on Margaret St?

Perhaps one reason that people started to imagine (intelligent) life on Mars came about because of an interesting mistranslation of an astronomical observation. While gazing at Mars in 1877, Schiaparelli noted ‘canali’ on the Martian surface. The correct translation of this in this context into English is “channels” but what the observation came to be known as was “canals”. Canals imply an intelligent builder, and hence life on Mars. Later observers also saw these ‘canals’ and a popular myth was born. It is a useful lesson for us all, sometimes how we see something can be influenced by the language we use to describe it.

soya hot chocolate, Curators

We photograph our coffee, and share it with our online friends. But would putting down our phone in a cafe be worth something for the planet as well as for ourselves? How many batteries do we need?

And then one final thought train, prompted by photographing the cafe with my mobile phone. The whole probability argument rests on two assumptions. The first is that there are other planetary systems (which we are finding). The second is that life is fairly easy to start, or at least, that the chances of producing life are not restricted to one planet a short distance away from the Sun; we are not unique. As yet we don’t know whether this assumption is justified but discoveries such as the deep sea hydrothermal vents challenge our preconceptions about the requirements for life and suggest that life could start more than once, and so could very well start on other planets, not just ours. In these vents, bacteria are known to convert what we think of as toxic chemicals into energy in a process known as chemosynthesis without the need of sunlight or other ingredients that we had thought essential to life. Could similar hydrothermal vents on other planets host new life forms?

And in a related way, what is going on with these vents? Is new life being created even now in the deep sea? In which case, what do we think about deep sea mining? If our aim is to reduce our carbon dioxide emissions by using more re-usable objects and renewable energy sources, we will require more batteries and batteries require (among other things) cobalt. If we are all to keep using mobile phones to photograph cafés, we too need the batteries which rely on these elements. A number of companies have realised that there is a vast untapped resource under the sea if only we could dredge it up. This may be easier or ultimately cheaper than recycling the old batteries. It may destroy a few hydrothermal vents or stir up the sea bed but what concern is that to us if we can gain access to more cobalt to allow us to have more batteries to allow us to all be ‘greener’.

Indeed, of what concern is that to us?

Curators Coffee is at 51 Margaret St, W1W 8SG

The universe and a coffee cup

a heat sensitive coffee mug

Now you see it….

Ordinarily, this week would be the turn of a cafe-physics review but circumstances have meant that this will be postponed by one week, sorry. So instead, a question. How does your coffee cup resemble the universe?

A few years ago, I was given a heat changing mug that revealed the constellations when the coffee within it was hot (and went black as the coffee was finished/went cold). Although this is not the way that the universe resembles a coffee mug, the science behind these mugs is quite interesting and they do provide a clue to the connection. The answer (or an answer, you may think of more) is in the way that the mug emits heat.

On a cold day with a hot coffee, I can be fairly sure that by putting my hands quite close but not touching the cup, I can feel the radiated warmth. Infrared waves helping prevent my fingers from becoming numb. Although there is air around the cup (even physicists don’t drink coffee in a vacuum) and so there will be heat transferred from the cup to my hands via conduction and convection, a large amount of the heat my hands receive will be radiated. It was by watching a candle flame between himself and a stove that Carl Wilhelm Scheele (1742-1786) inferred the presence of the infrared. For a coffee temperature of 60ºC (333 Kelvin), the cup would emit a range of light with a peak in intensity at a wavelength in the infrared of around 8.5 μm, about the length of a grain of espresso grind. The way that objects radiate heat is well known. Called a “black body spectrum”, all things radiate a spectrum that can be approximated to it, whether the object is a coffee cup or the universe, the difference is over what frequency range (or wavelength) the object radiates and where in the spectrum the light intensity peaks.

cold mug

Now you don’t.
The same cup as above but photographed when it is at room temperature not when it contains hot liquid.

Coffee emits light (in the infrared) at 8.5 μm because it is about 60ºC. A ‘red hot’ iron rod, still emits light in a spectrum that peaks in the infrared but appears more red than my coffee cup because the peak in the radiated intensity has decreased closer to the red region of the visible spectrum. The universe emits radiation over the same sort of blackbody curve but the spectrum emitted by the universe peaks at a wavelength of around 2cm, much longer than the coffee cup and well beyond the infrared. In fact, the universe is emitting light in the microwave region. The longer wavelength means that the universe is a lot colder than a cup of coffee. About 330º cooler in fact because the temperature of the universe is a chilly 2.7K (or approximately -270ºC).

The presence of this microwave ‘background’ was first detected in the 1960s. Further experiments in the 1990s with the COBE satellite and more recently with the Planck satellite have confirmed the almost perfect uniformity of the blackbody spectrum. No matter which direction you turn your microwave antennae to, you pick up the same background spectrum, peaking at about 2cm, all around the universe. This means that the background temperature of the universe is the same in all directions that we look, it is uniform. Indeed, it took until the sensitivity of the Planck satellite and more recently the WMAP data to show that the universe had any variation at all. And when it was revealed, it was a difference of about one part in a million. If we compare this to our coffee we can see from the lines of light that dance on the bottom of a tea cup that there is significant temperature variation within the cup. Even a difference of one degree would lead to a shift in the blackbody spectrum of the coffee cup by a few parts in a thousand: the background temperature of the universe is far more uniform than the temperature of your cup of coffee in fact the shift seems to be of the order of 0.0002º.

But, apart from an interesting curiosity why would we want to measure the temperature of the universe or know the uniformity of a cup of coffee? One reason is that knowing the current temperature and its likely cooling mechanism, means that we can calculate how long the universe, or coffee, has been cooling. If I were to drink a cup of coffee that was cooler than about 60ºC I would know that either it has been prepared much earlier and left on the counter top or that it had been prepared using water below the optimum brewing temperature. If I note from the lines of light crossing the bottom of the cup that there is a lot of convection going on in my tea cup with cells of different temperature, I could think that it is either a very cold day or that I didn’t warm the cup before I poured the coffee or tea into it.

NASA image CMB

There is even more information in the background if we start to look at the polarisation of the microwaves. The Cosmic Microwave Background showing the minute temperature fluctuations and polarisation directions. Image credit ESA/Planck Collaboration

Knowing the temperature of the universe allows us to check theories of how the universe formed (and therefore how it cools) by calculating its age and seeing if this matches with the age deduced by other means (by looking at the oldest star clusters for example). While looking at the minute temperature variations across the universe is also a test of the theories of the universe’s formation.

There are clearly differences between the universe and a mug of coffee, even a mug that shows the constellations of the stars, not least the fact that the coffee cools into the universe but the universe’s cooling is different having nothing to cool into. Nonetheless, it is remarkable that the same physical laws and mathematics that describes your cooling coffee cup can be used to describe our entire universe. So sit back, take a deep breath, and enjoy the universe through your coffee cup.

 

Hear no evil… at the Inverness Coffee Roasters, Inverness

Coffee in Inverness

Inverness Coffee Roasting Company.

Hear no evil, see no evil, speak no evil, so the saying goes and so the monkey, that was sitting on the sofa at the Inverness Coffee Roasting company (and café) indicated. And while I would not like anything evil to be said on this website generally, today it will be taken to an extreme as this cafe-physics review will not say much at all. Not because the coffee was not good, my Americano was a lovely complex dark and very enjoyable brew. Nor because there weren’t things to write about, several avenues suggested themselves for a ‘cafe-physics’ type review. There were also plenty of things to enjoy nibbling on while sitting down in this warm and comfy environment taking in the surroundings. Chocolate from The Chocolate Place was clearly labelled (and so I could enjoy it confident that it was nut-free) with a good variety of interestingly flavoured chocolates. The chocolate/coffee combination always goes well and the salted dark chocolate indeed complemented the coffee. A variety of freshly roasted coffees were in jars ready for selling to the home-brewing crowd and I heard both people behind the counter discussing coffee tastes with different customers to ensure that they could properly recommend a coffee for each of them.

So why, if the coffee was good, the service friendly and the environment interesting am I not going to write much about Inverness Coffee Roasting Company? Well, largely because I had been on holiday and so the preoccupations of the days before would necessarily influence what I noticed about this little café. Although I could happily write about neolithic monuments and considerations about inter-generational solidarity in relation to the re-use of refuse heaps at Skara Brae (as building material) and our own use (or misuse) of refuse in our environmental behaviour today. And it could even fit into a cafe-physics review of this venue as a sign on the wall above the door invited everyone to join the Plastic Free Scotland movement. However, it is not really what a Bean Thinking cafe-physics review is about. The idea behind the cafe-physics reviews is that things are often connected in surprising and beautiful ways and we can generally only see the connections if we slow down and look for them.

hear no evil, see no evil, speak no evil

Monkey on a sofa, but there was much more to notice at the Inverness Coffee Roasting Company if you looked around you.

Therefore, while you may (or may not) prefer to read about my holiday considerations of all things thousands of years old, what I thought I’d do with this café review is suggest a few things that I noticed in the café, things that offered a variety of potential thought-trains and then see what you think, what you notice, what you see (or don’t see). Perhaps you will observe something in one of the photos that clicks into a thought train for you, perhaps you can look around you, wherever you are right now – and think about the connections you could make to things you sense there instead? But whichever you do, it is a great time to sit back with a coffee (or perhaps a tea), breathe in and take in your surroundings.

Back in Inverness, the first thing of course was the monkey. Eyes shielded with an arm, suggestive of those who would prefer not to see what is in front of them. Nancy MacLean in “Democracy in Chains” notes that a training in the humanities perhaps opens students to question their society more than other, more utilitarian, subjects may do. Is it hurt pride that makes me rebel against this idea? Can’t physicists question too?

Perhaps it is connected but a sign by the door, and an identical one by the sofa, was written on the glass front of a box of coffee beans: “in emergency break glass”. This suggested so many avenues for exploration to me, I wonder which occur to others?

Behind our seats, a lizard was painted on/engraved into a stone, suggestive of fossils, geology and how we collect evidence. But a second lizard suggested a different direction. An ornamental lizard was positioned as if climbing up the counter. How do lizards climb? What is it about their feat? What connects lizards to a coffee company? Above our heads and above the door, stereotypical of Scotland perhaps, loomed a deer head complete with antlers. But this one was different: it was made of coffee beans and string. How a bean based diet could replace a meat one? The nature of units and how it would not necessarily be sensible to measure the mass of a deer in units of coffee beans? The mind jumped. Jumping beans?

Deer head in beans

Bean there done that?
Gruesome ornament or vegan friendly?

Finally, the logo of the cafe which was featured on signs around the interior and exterior of the space: a flaming coffee bean. The Maillard process and the changes in coffee as it is roasted? The nature of heat/temperature and the manner in which we measure it? What we hear as fire burns, lightning bangs or on “the first crack” of roasting and what this tells us about our atmosphere, our planet and our coffee is made of?

Whatever you notice, please get in touch, either by Facebook, Twitter, leave a comment or send me an email. But one last thing on coffee thought trains that links to real trains and is perhaps reflective back onto what it means to pause and watch. We left Inverness the day after our visit to Inverness Coffee Roasting by train. Inverness station has a relatively steep (1:60) gradient for 20 miles on leaving the station. It is Scotland in autumn, it had been raining and leaves had been falling on the line. Five or ten minutes out of the station, our train to Kings Cross juddered and came to a halt. A signal failure apparently. As the driver re-started the train, it slipped backwards, and again. We weren’t able to get up the hill. And so we had to return into Inverness station. Once back at Inverness station, the guard came across the tannoy and suggested that the signallers had given us the go-ahead to ‘have another run’ at the hill to see if we could get up it this time. So we tried again, juddering and shaking to a stop a few hundred metres beyond where we had stopped before. Back to Inverness station it was. The ever hopeful guard came across the tannoy again: “Third time lucky, fingers crossed”. This time the train left the station faster, building up speed, moving along more quickly and powering out of the station. The carriage was silent, were we going to make it? Past the first point we stopped at, past the second, a bit further, the family behind clapped, the train continued then slowed down and shook, juddered and then sped up again. We were over the hill and on our way back to London.

A last consideration on the conservation of energy and its relation to coffee and thought trains? Or a metaphor for how we may not find those connections in that cafe come to us quickly but if we persist and keep noticing, we can go on a fascinating journey?

Do let me know your thoughts.

The Inverness Coffee Roasting Company can be found at 15 Chapel Street Inverness, IV1 1NA

Creating an impression at 2Love Coffee House, Clapham Junction

coffee, cake menu, Clapham Junction, monmouth coffee

The menu at 2Love in Clapham Junction and some of the coffee making equipment in the window.

There is a lot of coffee paraphernalia on display in the windows at 2Love Coffee House on St John’s Road near Clapham Junction. Reusable cups, filters, moka pots, Chemex’s etc. Stepping inside, a piano greets you while the counter is on the left. The wall behind the counter is lined with jars of different sorts of tea while the coffee menu is on a blackboard close to the window. Coffee is roasted by Monmouth and is also available to purchase for brewing at home. Moreover, the number of re-usable cups on display meant that I have to admit to a touch of reusable cup envy when I saw the variety of glass cups on sale, have I used my cup enough to justify a second*? One great feature about this café was the care that they have taken to specify the allergens in their cakes on the blackboard, it is a considerate touch for people with allergies. Although we didn’t enjoy a cake on this occasion, it is great to know that I can!

There is definitely a musical feel to the café, with statues of musicians on shelves around the shop and pictures of different singers on each of the walls. Although we managed to find a table, it was rather crowded with the amount of chatter and distractions in the café initially challenging my assumption that all cafés can offer a space to contemplate and consider connections. However, this brief doubt in the idea behind Bean Thinking did not last long. The change in direction started with our discussion over an Americano and a fruit juice: can there be a justification for not eating certain meats if you are not already vegetarian/vegan and if so, what is it? This didn’t seem to go down too well with the table adjacent to us. On the wall behind our table was a metal picture of a horse drawn cart where the figures had been raised out of the picture to form a 3D image. It was reminiscent of the patterns given for stone rubbing as a child. But it was also reminiscent of something else, something that shines a light on an area of manufacturing as well as, perhaps, our conversation about the ethics of meat eating.

Not quite a mirror at 2 Love

3D Metal picture, musician statue and poster at 2Love Coffee House, who is the fairest of them all?

It concerns Chinese (or Japanese) magic mirrors. Known about for millennia (and not just in China, Aulus Gellius (c125 – approx 180 AD) wrote of them in the second century¹), they are slightly convex mirrors made of bronze. One surface appears to be an ordinary mirror but on the reverse surface, images of mythology or special Chinese characters are cast in relief. A Nature paper of 1879 describes why they were considered ‘magical’:

“If a polished surface is looked at directly, it acts as an ordinary mirror, reflecting the objects in front of it, but giving, of course, no indication whatever of the raised patterns on the back; if however a bright light be reflected by the smooth face of the mirror onto a screen, there is seen on this screen an image formed of bright lines on a dark background more or less perfectly representing the pattern on the back of the mirror, which is altogether hidden from the light”.¹

You can see photos of such mirrors and their reflections here but how would such an image be produced? Apart from magic, the first explanations for the effect focussed on it being trickery on the part of the makers of these mirrors. Perhaps the image was patterned onto the front of the mirror using more dense (or less dense) material, covered with a thin layer of lead or tin and highly polished so that you would never notice it by looking at your reflection only by shining light at it? Maybe there was other trickery involved on the part of the mirror makers to deceive us into thinking we could see through the mirror to the back. Later researchers wondered if these mirrors really existed at all as few could be found when they searched for them amongst Japanese mirror workshops. And yet a few mirrors with this magic quality were found and subject to study in the late nineteenth century.

window display 2Love

How much is that cup in the window?
Some of the reusable cups on sale at 2Love coffee house.

The results showed that the image was not formed if projected too close to the mirror but only if the screen were held some distance away from the mirror’s surface. Moreover careful optical experiments showed that the image was formed by the surface of the mirror having thicker regions that were less convex than the rest of the mirror so that these reflected the light differently². Although the image at the back of the mirror had been cast and not stamped on the back, the stresses and strains formed by the pattern on the metal somehow propagated through the (thin) mirrors and produced distortions on the surface of the mirror. Even when highly polished, these minute distortions in curvature remained causing the reflection of the ‘magic’ image under certain lighting conditions.

The theory describing the optics behind the magic mirrors was described as a ‘beautiful fact’ in a fairly recent mathematical description. But exactly how the stress of the pattern at the back gets transferred to the surface of the mirror remains to be understood³. Nonetheless, the fact that imperfections on one side of a material can be revealed by the projected reflections from the surface of the other, a process known as “Makyoh imaging”, is now used to check the integrity of semiconductor wafers before they are used in the manufacturing of devices. A piece of physics based neither on magic, nor on trickery, that is useful for our computer based lifestyles.

When faced with something that seemed improbable, it is interesting that our first explanations were based on magic, deceit on the part of the one who made it or distrust of the phenomenon altogether. It was only by carefully studying something that was too easily dismissed that the beautiful physics and industrial relevance of the property was revealed. For me this has pertinence to the question of our own investigation into what we think about the world. Do we place too much weight in our judgement of what we do not understand merely based on our own experience of how things are? Do we need to look more carefully at what we thought we knew? Great pondering points for a visit to a café and confirmation that, provided you have good coffee and a nice chair to sit on, contemplation directions can be found no matter how popular the venue.

2Love coffee is at 89 St John’s Road, Clapham Junction, SW11 1QY

¹ “The Mirror of Japan and its Magic Quality” Nature, April 10 1879, p 559

² “The Magic Mirror of Japan, Part 1”, WE Ayrton and John Perry, Proc. Royal. Soc, 28, 127 (1878-79)

³ “Oriental Magic Mirrors and the Laplacian Image”, MV Berry, Euro. J. Phys. 27, 109 (2006)

*Although there are differences depending on what you take into account, lifecycle analysis done here, here and here suggest a break-even point of disposable to reusable cups from 15 to 100 re-uses. However, if you consider that part of the solution to our environmental problems involves breaking the consumerist mindset then perhaps, if it ain’t broke, no need to replace it.

 

Hundred House: Wonder what they are?

Dog and Hat, Dog & Hat, Hundred House, Quarterhouse coffee

Look what arrived! The package from Dog & Hat with the distinguished logo.

What would happen if, rather than five minutes taken noticing the surroundings of a café, you were to look closely at the coffee you brewed in the morning? Different roasters, different coffees, an opportunity to notice something new in each brew. And so it was that a couple of weeks ago a package arrived in the post from the coffee subscription site “Dog and Hat“. Together with a note (in answer to a question I had sent them) ‘Recycled box, paper, mail bag’, came two coffees. An Ethiopian honey processed coffee from Hundred House and a Mexican washed coffee from Coatepec via Quarter Horse coffee.

Each time I moved the bag from Hundred House, a lovely aroma was released. So I moved it around quite a lot. While brewing a V60 with it, the morning light poured through the window producing beautiful lensing effects through the bubbles on the coffee surface and reflections from the coffee itself. The brewed coffee had such a sweet, fruity aroma reminding me of cherries that gave way to plums on tasting. What I took as toffee seemed to be described on the tasting notes as “dates” or “molasses”. Close enough I think. A lovely coffee to enjoy slowly.

Hundred House coffee

The Hundred House coffee bag. With that aroma, indeed how I wonder what you are.

Printed onto the bag was a star with extra lines coming out of it, suggestive of a twinkling star at night. Although each star is massive, they are all at such a great distance from us that they appear to us as point sources of light. And since all light gets refracted when it goes from one medium to another (think about the appearance of that paper straw in a glass of water) the star will appear to twinkle from our position on the Earth below our turbulent atmosphere. Although on a clear night we may not notice it directly, regions of relative hot and cool air in the atmosphere are constantly moving. Layers of air move over each other creating waves much like you see on the seashore and it is this turbulent environment that refracts the light from the stars in such a shimmering way. We can see a similar effect in tea (though not so easily in coffee*): When we pour hot tea into a cold cup, the convection in the cup leads to there being areas of hotter and cooler tea. The refractive index of water is temperature dependent and so the light incident on the tea gets refracted (bent) by different amounts depending on whether it encounters a cool region or a warm region. This leads to the lines of light that we see dancing on the bottom of the cup¹.

KH instability, Kelvin Helmholtz instability

Not a great example of a Kelvin Helmholtz instability but it gives the general idea. This one was quickly snapped from a moving car, I’m on the lookout for a better example.

Although atmospheric turbulence is inferred by the twinkling of stars, a beautiful visualisation of that turbulence can be seen in the form of the Kelvin-Helmholtz instability. Named after Lord Kelvin and Hermann von Helmholtz, this instability manifests as a string of waves on a cloud. It occurs when a fast moving layer of air flows over a slower moving one. The phenomenon is fleeting. If you are lucky enough to see it, the pattern manifests only for a very short time. They are definitely worth watching out for.

Depictions of atmospheric turbulence can also be seen in some paintings. It is said that Vincent van Gogh’s depiction of turbulence in his painting “Starry Night” is extraordinarily accurate. Certainly it is striking that the turbulence depicted by van Gogh does look like the turbulence in a coffee cup. However apparently it goes much deeper than this. In a numerical analysis of the turbulent patterns in a few van Gogh paintings, researchers showed that van Gogh’s depiction was very close to the mathematical (Kolmogorov) description of turbulent flow.

Coffee, Van Gogh

Van Gogh in a coffee cup. Reminiscent of his painting “Starry Night”, there are remarkable mathematical similarities between what van Gogh depicted and real turbulent events.

On their website, Hundred House discuss their aim of being a “collective space, where conversation, art and industry meet, over a cup of coffee”. Pouring a coffee, and watching the turbulence in the cup, perhaps pause a while to consider these points of connection and maybe add a bit of science to the mix. This week if you are in the Northern hemisphere, the Perseid meteor shower offers a particularly great time to reflect on turbulence in the atmosphere and the twinkling of the stars. If you locate the “W” of Cassiopeia (currently in the north east viewed from London) and watch, slightly underneath it towards Perseus, you should see a few meteors of the Perseid meteor shower (perhaps 60-70 per hour during the peak of 11th-13th August). While watching for the shooting stars, it is worth looking at those that twinkle. Which twinkle more, the stars of Cassiopeia or the stars toward the horizon? Why do you think this is?

Whether you watch the stars or just prepare your coffee, take the time. Enjoy your brew.

You can find out more about the coffee subscriptions at Dog and Hat coffee, here and more about Hundred House coffee, here. Do get in touch (email, Twitter, Facebook or comments) if you notice anything you want to share.

 

*We don’t see this so often in coffee because coffee, generally, absorbs more light than tea and so it is harder to see the bottom of the cup.

¹Another effect that can lead to these patterns in swimming pools and similar large bodies of water is caused by waves on the surface of the water. Where waves form on the surface of the pool, the curved surface acts as a lens focussing the light to the floor of the pond. As the waves move on the surface, the pattern on the pool floor will change similarly to that in the tea cup.

A coffee balancing act

Coffee Corona

Sometimes you can infer the existence of a thin (white) mist over your coffee by the corona pattern around reflected light fittings.

Clouds of steam hover just above your brew, dancing on the surface in sharp, almost violent, sudden movements. You can see it almost every time you drink a long black, cup of tea or even a glass of hot water. But what on earth is going on?

Back in 2015, a paper by Umeki and others showed that these dancing white mists were levitating water droplets, a common manifestation of something that had been noticed in lab experiments a few years earlier. Hundreds of water droplets, each about 10 μm diameter (the size of the smallest grains in an espresso grind) somehow just hover above the coffee surface. You can read more about that study here. Yet there remain questions. How do the water droplets levitate? What causes those violent movements in the cloud? Can contemplating your coffee help to understand these questions?

To explore what is happening with the white mists, we need to view them in an environment that we can control so as to change one or other of the parameters in the ‘coffee’ and see what happens to the mists. And this is what Alexander Fedorets and co-workers have been doing for a few years now (even before the work of Umeki). What Fedorets has noticed is that when you heat a small area (about 1mm²) of a thin layer of liquid, it is not just possible to create these white mists, you can see the droplets levitating and they form hexagonal patterns of droplets. This is quite astonishing because whereas we are used to solids forming crystals (think of water and snowflakes for example), a formation of liquid droplets in a “self-organised” pattern is an unusual phenomenon.

floating, bouncing drops

You can stabilise much larger droplets of water (up to a couple of mm diameter) by vibrating the water surface. This is a very different phenomenon but is also an interesting effect you can create in your coffee.

Then we can ask, what is it that causes these droplets of water to levitate above the surface? According to a recent paper of Fedorets, the answer is indeed as simple (in the first approximation) as the fact that these droplets are in a delicate balance between being pulled into the coffee by gravity and pushed upwards by a stream of evaporating water molecules. This balance suggests that we can do a ‘back of the envelope’ calculation to estimate the size of the droplets and also to understand what happens when the coffee cools down. We start by thinking about the gravitational pull on the droplet, the force on that is just F↓ = mg (where g is the gravitational acceleration and m is the mass of the droplet) so, if we write this in terms of the density of water, ρ, and the radius, r, of the droplet:

F↓ = ρ (4/3)πr³.g

Similarly, we know how to calculate the upwards force on a particle created by a flow of liquid (steam). It is the same expression as Jean Perrin used to understand the layering of water colour paint in a droplet of water (which is the same as the layering of coffee in a Turkish coffee) and so proved experimentally Einstein and Langevin’s theories of Brownian Motion (which you can read about here). If the steam has a velocity U and the dynamic viscosity of the steam is given by μ, the upwards force given by the steam is:

F↑ = 6πμUr

For the droplet to ‘balance’ (or levitate) above the surface, F↓ = F↑ so with a bit of re-arrangement we get the radius of the droplet as given by:

r = √[9μU/(2ρg)]

Plugging in sensible numbers for μ (2×10^-5 kg/ms) and U (0.1 m/s), and using the density of water (10³ kg/m³) and g = 9.8 m/s² gives a radius for the droplet of 17 μm which fits very well with what is observed.

Rayleigh Benard cells in clouds

The white mists often seem to vanish as if they were sustained by Rayleigh Benard cells in the coffee. Rayleigh Benard cells can also be found in the clouds in the sky, in fact, anywhere where there is convection.
Image shows clouds above the Pacific. Image NASA image by Jeff Schmaltz, LANCE/EOSDIS Rapid Response

But does the expression tell us anything else? Well, the radius is proportional to U; the velocity of the steam. So if you increase the temperature, you should increase the radius of the levitating droplets. This is exactly what is seen. Also, as the temperature of your coffee drops and there is less steam coming off the surface, it will become harder to stabilise these white mists; the mists will disappear as the coffee cools. This is something you can test for yourself: what is the optimum temperature at which to see the white mists (and drink your coffee)?

But the study by Fedorets showed something else. Something quite intriguing and perhaps relevant to your experience. Fedorets had stabilised the droplets on the surface by using an infra red laser and held them into a fixed area by only heating a small region of the liquid. In that sense the study is quite far from our physical experience with a coffee. But what Fedorets noticed was that these stabilised droplets grew with time. As the droplets grew, the bottom of the droplet got closer and closer to the liquid surface until, suddenly, the droplet collapsed into the liquid. This collapse caused a capillary wave on the water surface which is a small wave regulated by the surface tension of the water. And this wave then caused the surrounding droplets to collapse into the liquid interior. Because this happened very quickly (the wave travels at about 1m/s which is equivalent to a slow stroll at 3.6km/h), to us, looking at our coffee, it would appear that a violent storm has momentarily erupted over the surface of the white mists.

As the wavelength of a capillary wave is determined by the surface tension of the liquid, this suggests that if you change the surface tension of the coffee you may change the speed or perhaps the appearance of the collapse of these white mists. You can change the surface tension of your coffee by adding either soap or alcohol to your long black. Umeki did add a surfactant (to reduce the surface tension) and didn’t notice a significant difference to the speed of the wave but maybe other factors (such as temperature) were dominant in that experiment. It certainly seems a good excuse to investigate. Let me know if you experiment with your coffee and if the white mists move faster or slower in your Irish coffee compared with a morning V60, you may want to film the results if you intend to drink the coffee afterwards.

The work of Fedorets and of Umeki were both published under ‘open-access’ meaning that anyone can read them (without paying). You can read Umeki’s study here and Fedoret’s study here.

Why politicians should drink loose leaf tea

Coffee Corona

Notice the rainbow pattern around the reflected light spot?
The universe is in a cup of coffee but to understand rising sea levels, it’s helpful to look at tea.

The universe is in a glass of wine. So said Richard Feynman. It has been the focus of this website to concentrate instead on the universe in a cup of coffee, partly because it is much easier to contemplate a coffee over breakfast. However there are times when contemplating a cup of tea may be far more illuminating. Such was the case last week: if only a politician had paused for a cup of tea before commenting on rising sea levels.

There are many reasons to drink loose leaf tea rather than tea made with a bag. Some would argue that the taste is significantly improved. Others, that many tea bags contain plastic and so, if you are trying to reduce your reliance on single-use plastic, loose leaf tea is preferable. Until last week though, it had not occurred to me that brewing a cup of tea with a mesh ball tea infuser (or a similar strainer) was a great way to understand the magnitude of our problem with rising sea levels. If a stone were to enter a pond, the pond-level would rise; if a spherical tea strainer (full of loose leaf tea) were to be placed in a cup, the soon-to-be-tea level would rise.

Clearly, because we know our physics, we would not place a strainer of tea into an existing cup of hot water as we know the brewing process relies on diffusion and turbulence, not just diffusion alone. So what we more commonly observe in the cup is actually a tea-level fall as we remove the straining ball. Fortunately, we can calculate the tea level decrease, h:

A schematic of the tea brewing process

My cylindrical tea mug has a radius (d) of 3.5cm. The radius (r) of the mesh ball is 2cm. We’ll assume that the tea leaves completely expand filling the mesh ball so that the ball becomes a non-porous sphere. Clearly this bit is not completely valid and would anyway create a poor cup of tea, but it represents a worst-case scenario and so is good as a first approximation.

Volume of water displaced = volume of mesh ball

πd²h = (4/3)πr³

A bit of re-arrangement means that the height of the tea displaced is given by

h = 4r³/(3d²)

h = 0.87 cm

This answer seems quite high but we have to remember that the mesh ball is not completely filled with tea and so the volume that it occupies is not quite that of the sphere. Moreover, when I check this answer experimentally by making a cup of tea, the value is not unreasonable. Removing the mesh-ball tea strainer does indeed lead to a significant (several mm) reduction in tea level.

Earth from space, South America, coffee

Assuming we are truly interested in discovering more about our common home, we can gain a lot through contemplating our tea.
The Blue Marble, Credit, NASA: Image created by Reto Stockli with the help of Alan Nelson, under the leadership of Fritz Hasler

What does this have to do with politicians? Last week a congressman from Alabama suggested that the observed rising sea levels could be connected with the deposition of silt onto the sea bed from rivers and the erosion of cliffs such as the White Cliffs of Dover. If only he had first contemplated his tea. Using a “back of the envelope” calculation similar to that above, it is possible to check whether this assertion is reasonable. As the surface area of the oceans is known and you can estimate a worst-case value for the volume of the White Cliffs falling into the sea, you can calculate the approximate effect on sea levels (as a clue, in order to have a significant effect, you have to assume that the volume of the White Cliffs is roughly equal to the entire island of Great Britain).

Mr Brooks comments however do have another, slightly more tenuous, connection with coffee. His initial suggestion was that it was the silt from rivers that was responsible for the deposition of material onto the sea bed that was in turn causing the sea level to rise. About 450 years ago, a somewhat similar question was being asked about the water cycle. Could the amount of water in the rivers and springs etc, be accounted for by the amount of rain that fell on the ground? And, a related question, could the amount of rain be explained by the amount of evaporation from the sea?

The initial idea that the answer to both of those questions was “yes” and that together they formed the concept of the “water cycle” was in part due to Bernard Palissy. Palissy is now known for his pottery rather than his science but he is the author of a quote that is very appropriate for this case:

“I have had no other book than the heavens and the earth, which are known to all men, and given to all men to be known and read.”

Reflections on a cup of tea.

Attempts to quantify the problem and see if the idea of the water cycle was ‘reasonable’ were made by Pierre Perrault (1608-80) in Paris and Edmond Halley (1656-1742) in the UK. Perrault conducted a detailed experiment where he measured the rain fall over several years in order to show that the amount of rain could account for the volume of water in the Seine. Halley on the other hand, measured the amount of evaporation from a pan of heated water and used this value to estimate the evaporation rate from the Mediterranean Sea. He then estimated the volume of water flowing into that sea from a comparison to the flow of the water in the Thames at Kingston. Together (but separately) Perrault and Halley established that there was enough water that evaporated to form rain and that this rain then re-supplied the rivers. Both sets of calculations required, in the first place, back of the envelope type calculations, as we did above for the tea-levels, to establish if the hypotheses were reasonable.

If you missed the coffee connection, and it was perhaps quite easy to do so, the question that Halley studied concerned the rate of evaporation as a function of the water’s temperature. This is something that is well known to coffee drinkers. Secondly however, one of Halley’s experiments about the evaporating water was actually performed at a meeting of the Royal Society. It is known that after such meetings, the gathered scientists would frequently adjourn to a coffee house (which may have been the Grecian or, possibly more likely, Garraways). As they enjoyed their coffee would they have discussed Halley’s latest results and contemplated their brew as they did so?

What this shows is that sometimes it is productive to contemplate your coffee or think about your tea. Notice what you observe, see if you can calculate the size of the effect, consider if your ideas about the world are consistent with your observations of it. But in all of it, do pause to slow down and enjoy your tea (or coffee).

Tales from the worm bin

the cup before the worm bin

How it all began.
“Completely compostable”
But how compostable is it?

It is hard to believe but it was one year ago this week that the composting experiment that became #willitcompost started. The idea was to test just how “compostable” a coffee cup described as “completely compostable” really was. The problem is that “compostable” has a legal definition but it is not one that you or I may immediately recognise. Legally for a take-away coffee cup to be described as compostable it has to completely disappear within 6 months in an industrial composting facility. Industrial composting is quite different from home composting. In the former, the temperature is kept at (58±2)ºC while in my composting worm bin, it can get very cold indeed.

As has been written about elsewhere, in the absence of better industrial composting facilities, there is very little virtue involved by swapping a disposable cup for a compostable one, to combat the problem of waste it would be far better to remember your re-usable. However, what if you had a composting bin at home? How long would it take the cup to compost? And even, would it compost?

So every week for the past 52 weeks, I have posted a photo of the cup, composting away, in the worm bin. It seems clear that although it will eventually compost, more than 52 weeks is a long time to wait and not practical if you are drinking multiple take-away coffees.

willitcompost

51 weeks later, the lining and part of the rim of the cup are still in the worm bin. Clearly the worms have better things to eat.

In the meanwhile, other questions have been raised. What about other coffee packaging such as the bags for roasted coffee beans? What about the compostable “glasses”? Can anything be done to speed up the composting of the cup?

Last month, the opportunity came to start a new experiment testing these questions. A compostable coffee roasting bag from Amoret Coffee (which was reviewed on Bean Thinking here) was placed in the second shelf of the worm bin together with a cup, a compostable “glass” and a section of food packaging. The cup and the ‘glass’ were cut in half before being placed in the worm bin. One half of each was left as it was but the other half was soaked in (initially boiling) water for 12 hours. The idea of this was that part of the problem that has slowed the composting of the original cup was the lining that is designed to hold hot liquids without leaking. If we could somehow weaken that lining before placing it in the worm bin, perhaps the composting process would be accelerated?

talesfromthewormbin

A roasted coffee bag, a cup (split in two, see main text), a compostable glass and some food packaging, but will they compost?

Starting in late March provides the best chance of a quick composting process due to a particular aspect of worm behaviour. Although the composting worms will continue to eat the waste put into the composting bin throughout the winter, they do slow down quite a lot. If you have a worm bin, you may notice that the amount of waste that you can put into the bin decreases during the winter months. On the other hand, as the weather improves, the worms seem to eat everything very quickly so, to provide the best conditions for composting, the weather has to be reliably warm (or at least, not freezing).

Rather than once a week, updates will be approximately once per month both on social media and in the Bean Thinking newsletter. So keep your eyes on #talesfromthewormbin on twitter or subscribe to the newsletter. Do we really take our environmental responsibility seriously by using compostable packaging or, ultimately, is a more radical approach to waste, single use packaging and consumerism necessary?

Pushing it at Lever and Bloom, Bloomsbury

Lever Bloom coffee

Lever and Bloom under a blue sky.

Does a take-away need to be rushed? A coffee so quick that there is ‘not enough time to prepare a flat white’? Are we always so preoccupied with the distractions of our day that we consume our coffee merely for the pleasant caffeine kick that it provides?

Lever and Bloom in Bloomsbury is a great example of why this does not have to be, indeed should not be the case. Since 2015, Lever and Bloom have been operating out of a cart on Byng Place close to UCL and a number of other research institutes. The character of the surroundings really does affect the space and both times I have been to Lever and Bloom I have either met interesting people in the queue or overheard snippets of intriguing conversation about history I know nothing about.

Coffee Bloomsbury reusable coffee cup

Long black in a keep-cup and telephone box in Byng Place.

It is easy to spot the coffee cart in the corner. Firstly, it is bright red and quite eye catching but secondly because of the queue forming in front of it. Don’t be put off though, the queue moves very quickly so you won’t wait long even if you are in a rush. Queueing however does give you an opportunity to peer into the cart. Space is used extremely efficiently. with each piece of equipment  apparently having its own perfect home. It reminded me of a childhood game of trying to fit in as many objects as possible into a matchbox. A cabinet on the table in front of the cart displays cakes including cinnamon rolls (sadly sold out by the time I arrived in the afternoon). It was also nice to see the number of people ahead of me in the queue who were using re-usable cups.

The lever of the name refers to the (Izzo Pompei) lever espresso machine that is used on the cart. It was fascinating to watch the ground beans being carefully tamped and the lever being pulled to prepare the espresso. Although there is some debate as to the optimum water pressure needed for preparing an espresso, the standard pressure is 9 Bar; water is pushed through the tamped grinds at nine times the atmospheric pressure at sea level. Watching these espressos being prepared reminded me of preparing ceramic samples of an interesting magnetic material a few years ago. We were interested in the electrical properties of a class of materials called manganites. To prepare the materials for measurement we first had to grind the pre-cursor powders (but with a pestle and mortar, no burr grinders) and then, after a couple of further preparatory steps, press them into a pellet ready for firing in the oven. The machine used for pressing the pellets had a lever, not dissimilar to that on the espresso machines and yet, the pressure that we used for the pellets was roughly 1000 Bar. This high pressure was needed so that dense pellets of manganite material would be formed when we heated it in the oven (typically at 1200 ºC). Just as a good espresso depends on the pressure and then the temperature and time of extraction, so the properties of the pellet would be affected by the pressure and then temperature and time of firing in the oven.

Portland Stone fossils

Fossils in Portland Stone. It is astonishing what is revealed when you slow down and notice the buildings around you.

Similar effects affect the rocks of the earth, something that is particularly visible in the area around Lever and Bloom. A geological walking tour around Byng Place, Tottenham Court Road and towards the British Museum illustrates this particularly well. Behind Lever and Bloom, the church of Christ the King is built from Bath Stone. An oolitic limestone, this type of rock is formed of compressed sand and bits of shell. Much as the manganite samples of my study before they were fired in the oven but of a more interesting colour. Heading towards Gower St and the impressive UCL building is made of Portland Stone. Another limestone, this building material is a goldmine for urban fossil explorers. Continuing the walk, on Tottenham Court Road, the Mortimer Arms pub is fronted by quartzite while Swedish Green Marble adorns 90 Tottenham Court Road. Quartzite and Marble are both types of metamorphic rock, formed by pressing together different precursor materials at high pressure and temperature. Other types of marble can be seen on the tour, suggesting the influence of pressure and temperature of formation on the rock structure as well as the type of precursor rock.

It would seem that such a walking tour is perfectly timed for a longer style of coffee, perhaps a latte (in a re-usable cup of course) from such a centrally located place as Lever and Bloom. And of course, assuming you are using a re-usable, there is even more to ponder. The pressure and temperature during the manufacture of the re-usable cup would have affected the properties of the cup (or in my case, glass).

Let me know if you spot any interesting rocks or fossils during your time at Lever and Bloom but whatever you do, I hope that you can enjoy your coffee and then slow down to enjoy it a bit more.

Lever and Bloom is at Byng Place, WC1E 7JJ