Author Archives: kayatesriseup-net

On rings, knots, myths and coffee

vortices in coffee

Vortices behind a spoon dragged through coffee.

Dragging a spoon through coffee (or tea) has got to remain one of the easiest ways to see, and play with, vortices. Changing the way that you pull the spoon through the coffee, you can make the vortices travel at different speeds and watch as they bounce off the sides of the cup. This type of vortex can be seen whenever one object (such as the spoon) pulls through a fluid (such as the coffee). Examples could be the whirlwinds behind buses (and trains), the whirlpools around the pillars of bridges in rivers and the high winds around chimneys that has led some chimneys to collapse.

Yet there is another type of vortex that you can make, and play with, in coffee. A type of vortex that has been associated with the legends of sailors, supernovae and atomic theory. If you add milk to your coffee, you may have been making these vortices each time you prepare your brew and yet, perhaps you’ve never noticed them. They are the vortex rings. Unlike the vortices behind a spoon, to see these vortex rings we do not pull one object through another one. Instead we push one fluid (such as milk) through another fluid (the coffee).

It is said that there used to be a sailor’s legend: If it was slightly choppy out at sea, the waves could be calmed by a rain shower. One person who heard this legend and decided to investigate whether there was any substance to it was Osborne Reynolds (1842-1912). Loading a tank with water and then floating a layer of dyed water on top of that, he dripped water into the tank and watched as the coloured fluid curled up in on itself forming doughnut shapes that then sank through the tank. The dripping water was creating vortex rings as it entered the tank. You can replicate his experiment in your cup of coffee, though it is easier to see it in a glass of water, (see the video below for a how-to).

Reynolds reasoned that the vortices took energy out of the waves on the surface of the water and so in that way calmed the choppy waves. As with Benjamin Franklin’s oil on water experiment, it’s another instance where a sailor’s myth led to an experimental discovery.

chimney, coffeecupscience, everydayphysics, coffee cup science, vortex

In high winds, vortices around chimneys can cause them to collapse. The spiral around the chimney helps to reduce these problem vortices.

Another physicist was interested in these vortex rings for an entirely different reason. William Thomson, better known as Lord Kelvin, proposed an early model of atoms that explained certain aspects of the developing field of atomic spectroscopy. Different elements were known to absorb (or emit) light at different frequencies (or equivalently energies). These energies acted as a ‘fingerprint’ that could be used to identify the elements. Indeed, helium, which was until that point unknown on Earth, was discovered by measuring the light emission from the Sun (Helios) and noting an unusual set of emission frequencies. Kelvin proposed that the elements behaved this way as each element was formed of atoms which were actually vortex rings in the ether. Different elements were made by different arrangements of vortex ring, perhaps two tied together or even three interlocking rings. The simplest atom may be merely a ring, a different element may have atoms made of figure of eights or of linked vortex rings. For more about Kelvin’s vortex atom theory click here.

Kelvin’s atomic theory fell by the way side but not before it contributed to ideas on the mathematics (and physics) of knots. And lest it be thought that this is just an interesting bit of physics history, the idea has had a bit of a resurgence recently. It has been proposed that peculiar magnetic structures that can be found in some materials (and which show potential as data storage devices), may work through being knotted in the same sort of vortex rings that Kelvin proposed and that Reynolds saw.

And that you can find in a cup of coffee, if you just add milk.

 

Looking under the surface at Mughead coffee

Mughead Coffee, Coffee in New Cross

Set back from the busy A2, Mughead Coffee offers a space to unwind.

A new café has just opened in New Cross. Mughead Coffee opened in July 2017 and sits fronting the A2, part of an old Roman road connecting London to Dover. The large pedestrianised space outside the café provides plenty of room for a few tables together with some further chairs arranged along the café window. It also means that the cafe is set-back far enough from the road that it is possible to sit outside and enjoy the surroundings. Inside, there were plentiful seats but, sadly equally plentiful numbers of occupants relaxing in this new cafe. Clearly this new coffee place in New Cross is proving popular. And why not! Just down the road from the London Particular, Mughead Coffee serves Square Mile in a friendly atmosphere. It is easy to see this becoming a popular local haunt. The usual array of coffees were on offer together with a filter option but as we arrived shortly after lunch, the cake/edible option appeared a little depleted. The interior of the café is quite light and airy with comfortable chairs at the back and more regular seating towards the front. We ordered a long black and a ginger beer and then adjourned to a table outside to await our drinks.

The tables outside are arranged on a sloping pavement. This is not really a big deal, but did remind me of a comment made by the lecturer who was trying to instil experimental design into us as undergraduates: The only stable table is a three legged one. However there was not much time to reflect on that as very soon both coffee and ginger beer arrived with a glass of ice. The natural light revealed the oils on the surface of the coffee as they moved with convection. Different convection zones moving in the coffee just as air parcels do in the sky to form mackerel skies or hot lava moves to form different rock formations, both on Earth and elsewhere.

coffee and ice in New Cross on a wooden table

Coffee and ice at Mughead Coffee. Note the reflections on the coffee surface.

Once the ginger beer was poured into the glass, the ice cubes floated upwards with just a fraction of them bobbing above the surface, the majority of the ice cube beneath. A glance around our surroundings revealed other hints of sub-surface structures. A drain cover nearby indicated, together with some tiling along the pedestrianised zone, the line of the rain sewer running along the road. A public telephone box had no wires obviously leading from it meaning that all the wiring for the communication had to be subterranean. And a raised flower bed, full of thriving plants, had a little drainage hole right at the bottom in order that heavy rain storms did not drown the plants.

This last feature reminded me of a documentary I’d recently seen concerning climate change. Often we tend to think of climate change as involving things that we can see: the melting of glaciers or the disappearance of sea-ice, or freaky rain storms that cause local flooding. However there is another aspect, a sub-surface aspect, that has perhaps been far more visually alarming than even the break-off of the Larson A, B and C ice shelves. If only we could see it. The problem is that, as it happens below the surface of the sea, few of us see it, it is hidden from view and therefore easily hidden from our conscience. It is the drastic effect that rising sea water temperatures are having on a particularly unusual plant-animal combination, the coral reefs. Coral reefs such as the Great Barrier Reef just off Australia, are animals that exist in a symbiotic relationship with a particular type of algae called zooxanthellae. Although the ‘mouths’ of the coral eat passing zoo plankton at night, during the day, they get other nutrients from the photosynthesis products produced by the zooxanthellae that live within their skeletons. These plants give the corals those amazing colours (as well as food). In return, the coral provides the plant life with shelter (they live within the coral itself) and extra carbon dioxide.

Outside Mughead Coffee New Cross

Indications of a hidden architecture. Can you see the drainage hole at the bottom of the planter at the back of the photo?

As the sea temperature rises, the zooxanthellae become less efficient at photosynthesising and so of less use to the coral. If the temperature stays high, the coral ejects the plant life from its body causing the coral to lose all its colour, it has bleached. What sort of high temperatures are needed? It seems that if the temperature of the water is about 1-2°C above the usual seasonal maximum, the coral are ok for a few weeks. But if the temperature rise is 3-4°C (or higher) above the usual seasonal maximum, the damage can occur in just 2 days¹. Coral bleaching does not necessarily lead to coral death but if the bleaching is sustained vast areas of coral reefs can die and get destroyed, with significant impact to the local ecosystem. As corals host “nearly one-third of the world’s marine fish species…”² this impact will be far reaching and affect the livelihoods of millions of people³.

Although small scale coral bleaching has been documented since 1979¹, the first global scale coral bleaching occurred in 1998. It was 12 years until the next global bleaching event occurred in 2010. Following that, we have just had the third global bleaching event in 2015-16. In the latest episode, it is estimated that 29% of the Great Barrier Reef’s coral died (as in actually died, not just bleached). These temperature increases can be associated with global warming caused by increased greenhouse gases in the atmosphere (for more info click here (opens as pdf) or refer to [4]).

The frequency of these events, together with the fact that there were no global bleaching events prior to 1998 should be a dramatic warning siren calling on us to do something to arrest climate change. But what can be done and is it already too late? Well, it is not yet too late to do something. The plants, thriving in the box in front of Mughead can emphasise to us the importance of maintaining our local environment and by extension our global one. Taking time to slow down and take stock of what is beautiful in our environment, and the habits we need to develop to keep this for future generations, these are things that we can do. If you eat fish, was it caught sustainably? Some fishing methods can kill the coral reefs, check before you eat. This is not going to be hard to do. After all, we already do this with coffee. Many coffee drinkers (and roasters) will check how the coffee is grown and processed for both environmental cost and the conditions experienced by the farmers. Many such small actions can cumulatively build to an effort to stop climate change.

Which brings us, in a sense, back to the surroundings at Mughead Coffee. Sitting down and taking time to enjoy that coffee while appreciating our surroundings, the visible and the hidden, the busy road and the mini-oasis of plants in the planter, may help us to see that connectedness that pushes us to accept our responsibility to our common home. Contemplating the history of the road in front of us, will our planet still be beautiful in another 2000 years? With an offer of “gourmet sandwiches” on the menu (if only we’d got there early enough), there’s plenty of reason to head along to the old road in New Cross and sample the coffee while pondering our own impact on this interesting location.

 

¹ Life and Death of Coral Reefs, Charles Birkeland (Ed), Chapman & Hall, 1997

² Coral Reef Conservation, Ed Isabelle M Côté and John D Reynolds, Cambridge University Press, 2006

³ Chasing Coral, Netflix Documentary, 2017 (see trailer below)

4 Climate and the Oceans, Geoffrey K Vallis, Princeton University Press, 2012

Chasing Coral Trailer:

 

 

The impact of water on coffee

lilies on water, rain on a pond, droplets

What is the crater shape produced by falling droplets of water on freshly ground coffee?

Recently there has been considerable discussion about the impact of water on the taste of your coffee. Although this is interesting not only from a chemistry perspective, but also an experimental design and an environmental one, Bean Thinking is probably not the best place to explore such effects of chemistry on coffee taste. If you are interested, there is a recent article about it in Caffeine Magazine, click here. Instead, on Bean Thinking, the idea would be to go a little more fundamental and ask instead what is the impact of water on coffee? What effect does dripping water have on the craters produced in freshly roasted coffee grinds?

You may have noticed craters produced by rain drops on sand or paused while preparing your drip brew to think about the different ways that water percolates through a filter compared to an espresso puck. But have you stopped to consider what determines the shape of the crater that is produced as a falling droplet impacts a loose bed of granular material (such as coffee). Perhaps you have looked at images of the Chicxulub crater on the Yucatan peninsula and wondered about asteroid impacts on the Earth or craters on the Moon but what about something closer to home? What if the impacting object were liquid and the impact surface more sand like? It’s a problem that affects how rain is absorbed by soil as well as the manufacture of many drugs in the pharmaceutical industry. But it is also something that we could experiment with in coffee. Is there a difference between craters formed in espresso pucks compared to those in the coffee in the filter paper of a V60?

bloom on a v60

Bubbles in a V60 filter – but what is the impact of individual drops of water on the dry grains of coffee? The ultimate in slow coffee.

Recently, a study appeared in Physical Review E that investigated the crater shapes produced by water droplets on a bed of dry glass beads (imitating sand). The effect of the impact speed of the water droplet as well as the packing density of the granular bed (sand/coffee) was studied. A high speed camera (10 000fps) was used in combination with a laser to reveal how the shape of the craters changed with time, from the initial impact right through until the crater was stable. The authors came up with a mathematical model to consider how the energy of the falling droplet was distributed between the impacting drop and the sand bed. Does the droplet of water deform first or does the energy of the impact go into displacing the sand and so forming the crater?

Perhaps unsurprisingly, when drops of water fell onto dense beds of sand (think espresso pucks but not quite so packed), the craters produced were quite shallow. It would take a lot of energy to displace the densely packed sand but not quite so much to deform the droplet. But when the drops fell onto looser sand beds (think drip brew coffee) the crater produced formed in two stages and depended on the velocity of impact. A deep crater was formed as the drop first impacted the sand. Then as the camera rolled, the sides of the crater started to avalanche producing much wider craters that had different shapes in profile (from doughnut to pancake type structures). For looser beds of sand, the faster the impacting drop, the wider the final crater. You can read a summary of the study here.

So what would happen for craters produced during making an espresso compared to those produced making a drip brew? A first approximation would be that the espresso coffee is more densely packed, so the craters should be shallower and less wide than those produced in the loose packed filter coffee. However then we need to think that the water used in making espresso is forced through the puck with high energy. In contrast, in drip brewing techniques, the water used has a lower impact energy, (it could be said that the clue is in the name). So the energy of the impact would form larger craters in the espresso pucks and smaller craters in the drip brewers, an opposite expectation from that of the packing densities, which effect wins?

coffee ground in a candle holder

Early experiments with coffee grind craters: There are advantages to working with glass beads and high speed cameras.

But is there anything else? Grind size! Espressos are made using finely ground coffee beans, with a typical “grain size” being about 10μm (0.01mm). Drip brewed coffee is somewhat coarser, a typical medium grind being compared to grains of sand (which vary between 0.05-2mm, 50 – 2000μm but we’d expect ‘medium’ ground coffee to be at the lower end of that). This is fairly similar to the ‘sand’ used in the study in Phys Rev E which used grains of size 70-110 μm. A slightly earlier study had shown how the crater shape depended on grain size for ‘sand’ ranging from 98 to 257 μm. That study had revealed that how the water interacted with the different grain sizes depended in turn on whether those grains were hydrophilic (wettable) or hydrophobic (water proof). It is probably safe to assume that the coffee used in an espresso grind has the same hydrophilic properties as the coffee used in drip brew but even so, we still have those three variables to contend with, packing density, impact energy and grind size. So, happy experimenting! Let’s find out how the impact craters left in coffee change with preparation method. And whatever else, it’s a perfect excuse (if one were really needed) to drink more coffee while slowing down and properly appreciating it.

With thanks to Dr Rianne de Jong for pointing me in some interesting directions (not all of which fitted in this piece) towards the interaction of water with coffee, more coming soon I hope.

 

 

Cobwebs, Crows & Coleman Coffee, Lower Marsh

filter, Brazilian or Guatemalan, V60, rainbow, glass, Coleman Coffee, Lower Marsh, Waterloo

There’s a lot of physics in this glass cup of coffee, enjoyed at Coleman Coffee, Lower Marsh.

Coleman Coffee on Lower Marsh, Waterloo, is a surprisingly relaxing place. Surprising because the frontage gives little away. A door with windows on either side revealing a small wooden bench on the right and a larger table on the left. A food menu is on the left, the coffee menu in front of you (above the counter) and a note about how the coffee is roasted on a black board on your right. The space feels open and welcoming but it is the garden at the back that I think shifts Coleman Coffee from being a lovely little café to a great spot at which to just spend time and notice things.

My first visit was on an incredibly hot day in early July. For some reason I didn’t see the filter coffee option on the menu and so chose a long black to enjoy outside. The shade of the trees was a welcome respite to the hot Sun and the contrast created by the light provided much to dwell on with the inadequacies of my phone’s camera. Berries had formed on the tree growing up the wall of the café. After my visit I read the review of the café on Brian’s Coffee Spot and realised that these berries were mulberries. The other trees providing the shade were a Jasmine and a Pomegranate. I also found that I had missed the filter option and so a return visit was obligatory! How easy it is not to notice things.

ditch the plastic straw, enjoy a paper one

Chocolate milk and a paper straw.

A second visit sadly revealed the restricted opening hours of Coleman Coffee. Arriving at about 2.58pm, we were told it was take-away only as they were closing at 3pm. However the third visit was worth the wait. By this time the weather had turned and it had been raining, but the garden was still calling. The filter coffee on offer (V60) was either a Brazilian or a Guatemalan. Opting for the nuttier of the two (an allergy to actual tree nuts does not prevent my enjoying nuttiness in coffee!), we took a couple of glasses of water through to the back and awaited our drinks. When they arrived, it was interesting to find that the nutty coffee was truly nutty. A lovely flavour and mouthfeel to enjoy. It was also great to notice that the straw in the chocolate milk seemed to be an old-fashioned paper straw (rather than the environmentally problematic plastic straws). As it had rained, the stools outside were a little wet, even though they had been largely sheltered by the same trees above the garden. This time, the mulberry tree seemed mulberry-less, apart from the one berry lying sorrowfully on the floor. The red of the berry being squished (accidentally) underfoot leaving it lying and injured in the style of Pyramus and Thisbe. Across the other (wetter) side of the garden, three spiders were busy weaving new webs, ready to catch whatever flies came their way. It would have been easy to watch those spiders for hours but I think a good café can linger in the memory long after your visit has ended and so the spiders are still spinning their webs in my mind now.

garden spider at Coleman Coffee Waterloo

Spider on the table. What could be better than time spent contemplating their webs?

Photos of spiders webs glittering with dew drops are common place but somehow strangely attractive. Beads of dew gather at various points on the web leading to descriptions of cobwebs as being laden with jewels. A few years ago, a scientist contemplating spider’s webs asked why it was that water collected like jewels on the webs? Why didn’t it collect similarly on your hair? (You can read more about his story here). The team looked at the webs of one particular spider with an electron microscope. Electron microscopes can magnify things far more than optical microscopes (for images of coffee under an electron microscope click here) and so the scientists were able to observe how the hydrophilic (wet-able) fibres in the web turned from ‘puffs’ to ‘knots’ as they got wet. Water falling on the web was then attracted to these knots, partly due to an effect caused by the knot shape and partly due to the surface tension gradient of the water along the fibres. The results of the study can be found here.

Although it took five years of investigation after the initial contemplation, this study of spider’s webs could lead to tools that could be used for water collection or in devices to aid chemical reactions. Which brings us to the other ‘C’ of the title: crows. Sadly there were no crows in the garden on either of my visits to Coleman Coffee. Nonetheless there is a link. My first visit had been cut a little short as I was headed to the Royal Society Summer Science Exhibition. Apart from the fact that it was baking hot inside the Royal Society, this science outreach event had a good mix of science/experiments for adults and for kids, it was great to wander around and learn a large number of new things. So many exhibits caught my eye but the one that connects with Coleman’s and cobwebs was the exhibit on tool making crows.

Spider and web, Coleman

Spider building a web at Coleman Coffee

Crows have been shown to be great tool users. Particularly the New Caledonian Crow which has been shown to even make hooks out of twigs in order to fish out insects from their hiding places. While thinking about what it was that led to this species of crow becoming adept at tool use (and therefore perhaps an explanation of human tool use), it became apparent that the two particularly good tool using crow species lived on remote islands without predators. Not only did they have the physical ability to create tools (a straight beak for crows, a thumb for humans), they lived in a place where they could have time to explore and to create, to develop tools to enable them to get the most tasty bug.

Just as the scientists had needed time to watch, to investigate and to think about spiders webs in order to create new tools, so crows may have needed that time to explore their tool use. Perhaps it’s worth pushing the analogy to inner-city London (or indeed wherever you are). The more we spend time out, contemplating and enjoying nature, the more productive we can be. But to develop, we need to slow down, to think, to contemplate, and to enjoy great coffee in surroundings as special as at Coleman Coffee.

Coleman Coffee is at 20 Lower Marsh, SE1 7RJ

Good news on coffee bag recycling & re-using air valves

air valve, plastic, environmental coffee packaging

Air valves and metallised plastic are common packaging materials for freshly roasted coffee.

Hopefully we’re all trying to reduce our environmental impact but there are things that we can’t seem to avoid. There is the saying “reduce-reuse-recycle”, but how do we do that with coffee bags? Can we reduce? How would we reuse? And recycling has, until now, seemed impossible.

The problem is that in order to keep freshly roasted (and particularly freshly ground) coffee fresh, it is packed in metallised plastic bags normally with an air valve. Metallised plastic is not recyclable in the general waste stream and so the air valve, even if it is made of a technically recyclable plastic material, is unlikely to be practically recycled.

There are questions as to whether it is necessary to package coffee in this way. A blind taste test by the Nottingham based coffee roaster Roasting House showed that, if your coffee was freshly roasted, a (recycled and recyclable) paper bag was a good option for packaging. Although the flavour profile was different for coffee stored in a bag with an air valve compared with the paper bag after 1 week of storage, the benefit to the taste did not seem to be worth the environmental cost if the coffee is delivered fresh to the customer (within 24 hours or so).

However, perhaps the roaster that you buy coffee from prefers to use the traditional metallised bags with air valves. What can be done there? Fortunately, there has recently been some great news on this front. Has Bean coffee have teamed up with TerraCycle to offer recycling of Has Bean coffee bags. TerraCycle are a company that specialise in recycling (or reusing or up-cycling) hard to recycle materials, such as coffee bags and coffee capsules. TerraCycle takes materials such as coffee bags and either repurposes them (TerraCycle’s website mentions repurposing juice pouches by sewing them together to make rucksacks) or pelletising them to be made into other plastic products.

Earth from space, South America, coffee

Our common home. Can we keep our coffee habit while keeping our home safe for future generations?
The Blue Marble, Credit, NASA: Image created by Reto Stockli with the help of Alan Nelson, under the leadership of Fritz Hasler

Sadly (but understandably), to take advantage of Has Bean’s offer to recycle your coffee bags you have to be a Has Bean customer. However, all is not lost. If you are not a Has Bean customer you can purchase your own recycling box from TerraCycle for coffee bags (prices start from £73*) or coffee capsules (prices start from £72.36*). Perhaps it is something out of the range of the general consumer but it may be something that smallish coffee roasters with a network of cafés could consider stocking? Do you regularly buy your coffee from a cafe? Why not ask them if they will consider TerraCycle? If you drink coffee from larger companies such as, Tassimo, L’OR and Kenco, there are (free) collection points for their packaging nationwide.

However, what if you don’t buy coffee from either Roasting House or Has Bean nor have easy access to a TerraCycle recycling box? There is one more option in the 3-r’s: re-use. To consider this question, I’ve been experimenting recently with a coffee bag with an air-valve (left over from Roasting House’s experiment that they were happy to send me, thanks Roasting House). Could the air valve be re-used as a valve for fermentation?

Lacto-Fermentation has been in the news a lot recently for the health benefits that it may have. However it is also an interesting and easy way of preserving almost any vegetable. The idea is simple. Mix the vegetables to be preserved in some salt water, store them in a jar and leave them for a few days. That’s it. The salt kills the harmful bacteria while allowing the bacteria that is good for us, the lactobacillus, to thrive. These lactobacillus also produce lactic acid that preserves the vegetables for many weeks while giving them that slightly sour taste of sauerkraut and kimchi.

lacto fermentation, airvalve, air valve, reduce reuse recycle

Can you use coffee bag air valves as one-way lids for fermenting vegetables?

A problem with fermentation seems to be that if you tightly seal the vegetables in a jar, the build up of gas during the fermentation process could mean that the mix explodes. If you open the jar every day to let the gas escape, you may well end up with mouldy cabbage rather than delightfully acidic sauerkraut. This is where the coffee bag air valve comes in. Could you replace the lid with a coffee air-valve and so allow the gas to escape while not having to open the lid every day?

Replacing the glass lid of a Kilner Jar with a lid made from a ring of cardboard (lined with the coffee packaging) and then the coffee bag with air valve seemed to work at first. As had been predicted, my first attempt at fermented spring greens (where I opened the lid each day) had resulted in mouldy cabbage. Successful fermentation came when the glass lid was replaced with the air-valve construction. Could there be a re-use for the air valve?

fermented cabbage

Fermented spring greens. These vegetables have been fermented with salt.

To check whether the valve worked as planned, I used it as a lid for a jar containing bicarbonate of soda and vinegar. As anyone who has played with these substances for making rockets or model volcanoes will know, combining these two substances produces a lot of gas. Again, nothing exploded. However, sadly (?) nothing exploded either when I sealed the air valve with sellotape and repeated the bicarbonate of soda/vinegar experiment. A quick inspection revealed air-gaps between the cardboard ring and the air valve lid and while these could be sealed quite easily, the air valve never seemed to be the primary outlet valve for this set-up.

So, a failure? A null result? Perhaps, but perhaps not. The air valve structure did mean that I was confident that I didn’t have to open the lid on the fermenting cabbage and the cabbage did not turn mouldy before it fermented. Unfortunately, it is hard for me to eat enough fermented cabbage to justify having repeated this experiment enough times yet to be certain! So this is where you come in. Why not have a go at making your own sauerkraut, kimchi or indeed any pickled vegetable (apart from potatoes apparently). Re-use that air valve while reducing food waste. If you do so, please do let me know your design and how it worked (and of course any good fermented vegetable recipes). Alternatively, if you have found another use for those old air valves, or know another coffee roasting company that is recycling its packaging or making efforts to move to  more sustainable packaging, please do let me know in the comment section below, on Twitter or on Facebook.

Enjoy your coffee and your lactobacillus.

*prices correct at time of writing (18th July 2017). Please check TerraCycle’s website for most recent prices. If you are outside the UK, the international website of TerraCycle can be found here.

Coffee & temperance at the Penny, Old Vic

inside the Penny Old Vic

Coffee at the Penny

A café with good coffee in a theatre? I admit to being a little dubious when I first read about Penny at the Old Vic. Fortunately, there was no reason to be concerned. Penny serves Workshop coffee in an unusual setting (even accounting for the fact it is in a theatre). Going through the doors to the Old Vic, you turn left and head down a staircase to the basement where a long counter stretches out in front of you and to your right. Being a theatre café, there were a wide selection of snacks, bar meals, beer and wine in addition to the coffee being served with the La Marzocco espresso machine. As you’d expect, the usual range of coffees were on offer but if you prefer non-dairy milk, there was oat and almond available in addition to the more usual soy based milk. (Although almond milk is one to watch for if you have a tree-nut allergy as there is a risk of cross contamination).

There was also a wide selection of chairs and tables to choose from, ranging from a standard table, to a high table with stools and, around the corner, some chairs that look like you can sink into them and enjoy your coffee way after the performance has been called. The café is open all day (in fact from 8am until 1am on week days) and, if you are not there during a performance is quite spacious (though during the intervals it could probably get quite crowded).

staircase, Old Vic

The lighting on the staircase periodically got brighter and then dimmer. How easy is it to keep our national electrical supply constant such that blackouts and brownouts are not a problem?

The café certainly provides a service for good coffee in Waterloo (it’s within 5 minutes walk from the station) and it is a great place for refreshment if you are visiting the theatre, but is it also the sort of place at which you can slow down and enjoy the moment? The type of neighbourhood café where you can sip your coffee while letting your mind wander onto a café inspired thought train? At first glance, it is perhaps unpromising as it has clearly been renovated and made to be a modern café. But then, thought trains do not happen “at first glance” but as a result of slowing down, sitting, watching and absorbing the surroundings. It is as you do this that I think Penny at the Old Vic starts to speak to you.

The first thing that you may notice is the lighting. A number of different types of lightbulb including an industrial looking art-piece on the stairwell coupled to what appeared to be natural light coming down through another staircase. This theatre was first built in 1816-1818¹ (but with significant rebuilds since then), how was the stage lit at that time? Where did the theatre patrons go to get a cup of coffee or a glass of wine between the scenes and how could they see anything in the dark?

Around 3.5 miles away, one of the first housing developments to have electric lighting was being constructed in the 1860s. The electricity was supplied by seven steam engines housed in a building just off High St Kensington and sent to the new development next door, “Kensington Court”¹. Evidence of the electrical power station (which supplied DC not AC electricity) can still be seen on a stone sign on the building alerting passers by to the “Electric Lighting company”. It is probable that no such set of steam engines provided power for the lighting in the Old Vic, which was more likely still run on candles and gas lighting. However, it is something that was nearly contemporary with the development of Kensington Court that gives this post its title. It is also the reason behind the name of the cafe.

Soya hot chocolate at the Penny, Old Vic

Lord Kelvin got thinking about viscosity as a consequence of drinking a hot chocolate.

In the 1880s, a woman called Emma Cons took control over what is now the Old Vic. When she ran it, the theatre was called the “Royal Victoria Hall and Coffee Tavern” and ran ‘morally decent‘ productions for local people (note though the importance of the coffee to the project!). These productions included scientific lectures for which the entrance fee was a penny, hence, apparently, the Penny café. Apparently she also ran science classes in the disused dressing rooms and, though the mind boggles as to what experiments were done in this theatre at that time, the classes and the lectures were so popular that soon, Cons founded Morley College to continue this adult education. Morley College continues as an adult education college to this day and is now one of London’s oldest adult education colleges.

So it would appear that, even though the Penny café is a relatively new addition to the Old Vic theatre as we know it, the associations between the theatre and coffee (and the theatre and science) go back a long way. First appearances can be deceptive and, with good coffee and much to ponder, the Penny is definitely one to sink into a chair and to listen.

Penny café is in the Old Vic Theatre, The Cut, Waterloo, SE1 8NB

Inside the Penny

Penny at the Old Vic.

¹The London Encyclopaedia, 3rd Edition

Theme on a V60

bloom on a v60

V60 bubbles. There is much to be gained by slowing down while brewing your coffee.

Preparing a coffee with a pour-over brewer such as a V60 is a fantastic way to slow down and appreciate the moment. Watching anti-bubbles dance across the surface as the coffee drips through, inhaling the aroma, hearing the water hit the grind and bloom; a perfect brewing method for appreciating both the coffee and the connectedness of our world. The other week, while brewing a delightful Mexican coffee from Roasting House¹, I noticed something somewhat odd in the V60. Having placed it on the kitchen scales and, following brewing advice, measured the amount of coffee, I poured the first water for the bloom and then slowly started dripping the coffee through. Nothing unusual so far and plenty of opportunity to inhale the moment. But then, as I poured the water through the grind, I noticed the scales losing mass. As 100g of water had gone through, so the scales decreased to 99g then 98g and so on. It appeared the scales were recording the water’s evaporation.

science in a V60

Bubbles of liquid dancing on the surface of a brewing coffee.

It is of course expected that, as the water evaporates, so the mass of the liquid water left behind is reduced. This was something that interested Edmond Halley (1656-1742). Halley, who regularly drank coffee at various coffee houses in London including the Grecian (now the Devereux pub), noted that it was probable that considerable weights of water evaporated from warm seas during summer. He started to investigate whether this evaporating vapour could cause not only the rains, but also feed the streams, rivers and springs. As he told a meeting of the Royal Society, these were:

“Ingredients of a real and Philosophical Meteorology; and as such, to deserve the consideration of this Honourable Society, I thought it might not be unacceptable, to attempt, by Experiment, to determine the quantity of the Evaporations of Water, as far as they arise from Heat; which, upon Tryal, succeeded as follows…”²

Was it possible that somehow Halley’s demonstration of some three hundred years ago was being replicated on my kitchen scales? Halley had measured a pan of water heated to the “heat of summer” (which is itself thought provoking because it shows just how recent our development of thermometers has been). The pan was placed on one side of a balance while weights were removed on the other side to compensate the mass lost by the evaporating water. Over the course of 2 hours, the society observed 233 grains of water evaporate, which works out to be 15g (15 ml) of water over 2 hours. How did the V60 compare?

Rather than waste coffee, I repeated this with freshly boiled water poured straight into the V60 that was placed on the scales. In keeping with it being 2017 rather than 1690, the scales I used were, not a balance, but an electronic set of kitchen scales from Salter. The first experiment combined Halley’s demonstration with my observation while brewing the Mexican coffee a couple of weeks back. The V60 was placed directly on the scales and 402g of water just off the boil was poured into it. You can see what happened in the graph below. Within 15 seconds, 2 g had evaporated. It took just a minute for the 15g of water that Halley lost over 2 hours (with water at approximately 30 C) to be lost in the V60. After six minutes the rate that the mass was being lost slowed considerably. The total amount lost over 12 minutes had been 70g (70ml).

evaporation V60 in contact with scales

A V60 filled with 400g of water just off the boil seemed to evaporate quite quickly when placed directly on the scales.

Of course, you may be asking, could it be that the scales were dodgy? 70g does seem quite a large amount and perhaps the weight indicated by the scales drifted over the course of 12 minutes. So the experiment could be repeated with room temperature water. Indeed there did appear to be a drift on the scales, but it seemed that the room temperature water got moderately heavier rather than significantly lighter. A problem with the scales perhaps but not one that explains the quantity of water that seems to have evaporated from the V60.

control

Hot water (red triangles) loses more mass than room temperature water (grey squares).

Could the 70g be real? Well, it was worth doing a couple more experiments before forming any definite conclusions. Could it be that the heat from the V60 was affecting the mass measured by the electronic scales? After all, the V60 had been placed directly on the measuring surface, perhaps the electronics were warming up and giving erroneous readings. The graph below shows the experiment repeated several times. In addition to the two previous experiments (V60 with hot water and V60 with room temperature water placed directly on the scales), the experiment was repeated three more times. Firstly the V60 was placed on a heat proof mat and then onto the scales and filled with 400g of water. Then the same thing but rather than on 1 heat proof mat, three were placed between the kitchen scales and the V60. This latter experiment was then repeated exactly to check reproducibility (experiment 4).

You can see that the apparent loss of water when the V60 was separated from direct contact with the scales was much reduced. But that three heat proof mats were needed to ensure that the scales did not warm up during the 12 minutes of measurement. Over 12 minutes, on three heat proof mats, 14g of water was lost in the first experiment and 17g in the repeat. This would seem a more reasonable value for the expected loss of water through evaporation out of the V60 (though to get an accurate value, we would need to account for, and quantify the reproducibility of, the drift on the scales).

V60 Halley

The full set: How much water was really lost through evaporation?

Halley went on to estimate the flow of water into the Mediterranean Sea (which he did by estimating the flow of the Thames and making a few ‘back of the envelope’ assumptions) and so calculate whether the amount of water that he observed evaporating from his pan of water at “heat of summer” was balanced by the water entering the sea from the rivers. He went on to make valuable contributions to our knowledge of the water cycle. Could you do the same thing while waiting for your coffee to brew?

Let me know your results, guesses and thoughts in the comments section below (or on Twitter or Facebook).

¹As this was written during Plastic Free July 2017, I’d just like to take the opportunity to point out that Roasting House use no plastic in their coffee packaging and are offering a 10% discount on coffees ordered during July as part of a Plastic Free July promotion, more details are here.

²E Halley, “An estimate of the quantity of vapour….” Phil. Trans. 16, p366 (1686-1692) (link opens as pdf)

Coffee chemistry at Estate Office Coffee

Could it really be true that the tables were reclaimed school science desks? I had read a review of Estate Office Coffee by Beanthere.at on London’s Best Coffee that had made this surprising claim (together with favourable comments about the coffee and cakes). Like a red flag to a bull, a visit was inevitable. Would there be any clues left on the tables as reminders of the past history? In the absence of many photos of the interior of the café, my mind wandered to images of long wooden benches like the physics labs in my old school. I imagined enjoying a coffee at such a bench, seated on a wooden stool, my feet not able to reach the ground. So when I arrived outside the cute little building, I was a bit puzzled as to how a whole lab could fit inside! Going in, my images of rows of coffee-table-lab-benches were metaphorically thrown out the window. Instead, a set of modern looking (small) tables were arranged so that several groups of 2-4 people could sit and enjoy their coffee together or individually. A lovely, friendly, space for conversation with friends but not quite the lab I had imagined. The counter, which was on the right as we entered, had a great array of muffins and cakes arranged on it which proved irresistible (and they knew which allergens were in which cake, so a definite tick in the ‘allergy friendly’ café box). The coffee (from Allpress espresso) was also very good and we ‘retired’ to a table to enjoy coffee and cake together.

interior Estate Office Coffee

Clearly science labs have changed since I was at school! The tables in Estate Office Coffee are reclaimed lab benches.

Although warm that day, sitting near the window was a very pleasant way of slowing down and noticing things. Moreover, the local history that is framed on the wall near the door, provided an interesting diversion for understanding how this quirky building came to be (and to survive in its present form). Copies of Caffeine magazine were also lying around adding to the large number of things that you could think about rather than revert to checking your phone. Finally though, curiosity got the better of me and I asked, were the tables really old school science lab benches? The helpful barista wasn’t absolutely sure and so texted the owner to enquire. Fairly quickly an answer came back: yes indeed, the wood had been reclaimed and used to be laboratory benches. Either school science labs have changed a bit since I attended or the tables have undergone a refurbishment as well as a reclaim, but nonetheless what a feature! Together we looked underneath the tables and noticed the parallel grooves running along the underside of the wood. What were they used for? Pens? Drainage channels for spilt chemicals? The mind boggled. But then returning to our table, we noticed that despite the lovely varnish and careful refurbishment, our table showed evidence of previous science lab use. Two circular stains as if the wood varnish had been etched by a strong acid. Immediately this took me back to experiments-gone-wrong with a home chemistry set but then it set off a whole different thought train through a slightly lateral connection to acidity and coffee.

table detail, inside Estate Office Coffee

Evidence of a past life?
Two rings in the varnish on one of the tables at Estate Office Coffee.

The issues and science associated with acidity in coffee have been discussed many times elsewhere and so if you would like to follow that train of thought you can do so here or here. Instead, I was reminded that the Arrhenius definition of acidity was that of a substance that, when in solution, increased the concentration of H+ ions in the water. For reasons that will become clear, this reminded me of stories I had heard of expert coffee-tasters who always use the same spoon when cupping coffee. Were there actually very good reasons that these coffee tasters always insist on using their own, same spoon, in every cupping session?

The connection between acidity and the spoons used for cupping comes via the ability of substances to gain or lose electrons to become ions. In the case of acids, the ion is H+ but different elements form their ionic counterparts more or less easily. This means that it is easier to take two electrons from the element copper (Cu) to form Cu2+ than it is to remove one electron from gold (Au) to form Au+. The ‘ability’ of a substance to gain (or lose) electrons is measured by the standard electrode potential. A few years ago, a group at the Institute of Making investigated whether different teaspoons made from different metals tasted different. In a blind taste test involving 32 participants, not only did they find that the spoons tasted different (as measured by bitter, metallic, strong etc), those metals that were more likely to form ionic species in solution (as indicated by the standard electrode potential) consistently tasted more bitter and more metallic than the rest: copper and zinc teaspoons tasted metallic, chrome and stainless steel tasted the least.

coffee at EOC Streatham

The important thing is how this tastes. What is the influence of cup size, shape, colour on your perception of the taste of coffee?

What was more interesting though was that the investigators then turned to the question: does the type of spoon used influence the taste of a substance? Although they investigated ice cream rather than coffee, the tastes they were looking at (bitter, sweet, salty, sour) are very relevant to coffee tasting. Again, the authors did a study involving a series of blind taste tests, this time involving 30 participants. Again, the teaspoons used were identical to each other apart from the fact that each had been electroplated with a different metal (gold, copper, zinc or stainless steel). Again there appeared to be a dependence between the taste of the substance (ice cream) and the standard electrode potential of the metal used for the spoon. When the ice cream (which had been separately flavoured to be more salty, bitter, sweet, sour or left plain) was blind-tasted with zinc or copper spoons, the ice cream was consistently rated more bitter than when tasted with stainless steel spoons. But there was more, it seemed that the sweetness of sweet ice cream was enhanced by the copper and zinc spoons. Indeed, copper and zinc spoons seemed generally to enhance the dominant taste of the ice cream (sweet became more sweet, salty more salty etc). Although spoons made of these two metals were also rated as tasting metallic, the most pleasant blind-tested ice cream-spoon combination was the sweet ice cream tasted with the copper or zinc spoons.

So it would appear that the material that the spoon is made from could influence our perception of the taste of the food or drink we consume with it. The taste of coffee could be influenced by the type of metal spoon that is used to taste it with. Other studies have emphasised the psychological importance to taste of the appearance or weight of the spoon. For consistent cupping therefore, it may very well be a good idea to stick to your favourite spoon.

However, this seems an area in which anyone can do a bit of kitchen-top coffee science experimentation. Have you blind taste tested several coffees? What about different coffees with different spoons? For those who cup coffee regularly it would be fascinating to hear your thoughts on the influence of the spoon on the taste of coffee. For those of you new to coffee cupping, you can find a how-to at the bottom of this post and then please do share your experiences. In the meanwhile, you may be pleased to return in our imaginative journey to Estate Office Coffee where a great tasting coffee can be enjoyed in a non-metallic cup and where you may additionally pause to ponder the influence of your surrounding environment on the pleasure you derive from your coffee.

Estate Office Coffee can be found at 1 Drewstead Road, Streatham, SW16 1LY

 

 

 

Would you like plastic in that?

Straws with viscous liquid (milkshake) in them

Do you need that straw?

Plastic Free July starts in just a few days time. Each year this initiative encourages us to eliminate, or at least reduce, our use of single use plastic throughout the month of July. It is a great way to increase our awareness of our plastic use by attempting not to use any.

There are numerous reasons that we may want to reduce our plastic consumption. In addition to the problems of litter associated with plastic waste, there are problems for wildlife caused by ingesting our rubbish. Even if we dispose of it responsibly, plastic takes a long time to degrade. It is thought provoking to consider that the take-away cup that we discarded yesterday may still be lying in some landfill site years after we have forgotten about drinking that coffee. So what can be done about it and what are the specific issues for coffee drinkers?

air valve, plastic, environmental coffee packaging

Air valves and metallised plastic are common packaging materials for freshly roasted coffee, but can we avoid them?

One way to start to reduce our dependence on single use plastic is to understand how much we actually use on a day by day basis. Registering for a plastic free July is one way of doing this. As a result of attempting a Plastic Free July last year, I have found some plastic-free habits that have stuck with me all year. Loose leaf tea is one such improvement (teabags can also contain plastic). Although initially it seemed a bit of a pain to use a basket to brew the tea, as I kept with the habit I found it easy to compost the tea leaves after making a brew and the tea tastes better too. Things like shampoo bars and tooth ‘paste’ tablets (from Lush) have also been better and longer lasting than similar products packaged in plastic bottles.  Although some plastic habits are hard to break, living as plastic free as possible for one month did deepen my awareness of the plastic that I take for granted.

But perhaps living plastic free for a month is too daunting? An alternative challenge sadly emphasises just how linked coffee drinking can be to single-use plastic consumption. The Top 4 challenge asks you to eliminate, just for July, the target take-away items. Of these 4, at least 2 (and arguably 3) are linked to coffee drinking or cafés. The top 4 are plastic bags, bottles, take-away coffee cups and straws. Could you avoid these for just one month? Take the challenge.

blue tits, mint water, mint infusion, mint leaves in water

Enjoying a glass of water in a cafe can be better than running with a bottle of water anyway.

If you are ready to go plastic-free in your coffee habits, here’s a list of where we frequently encounter single-use plastic while drinking in cafés or even at home, together with suggestions of how to avoid the plastic where appropriate. Please let me know in the comments section below if you can think of further examples (and how you are avoiding them either in July or more permanently).

  • Disposable take-away coffee cups – get and use a re-usable one. You can find a helpful comparison of different types of re-usable coffee cups on Brian’s Coffee Spot.
  • Tea bags – yes they can contain plastic, see more information here. To avoid them, get hold of a metal tea basket, or even a tea pot and strainer and start investigating loose leaf tea.
  • Water bottles/soft drinks bottles – if in a café, why not enjoy the moment by staying with a glass of water rather than grabbing a bottle? If you are in a hurry though, a flask (such as klean-kanteen) is a great investment. In some parts of London (and perhaps elsewhere?) chilled tap water is available on tap for use in re-usable bottles
  • Air valves on your roasted coffee bag – do you really need these? The Nottingham based coffee roaster, Roasting House, did a taste test on freshly roasted coffee packaged with and without air valves, you can read their results here. If the coffee roaster that you normally purchase coffee from insists on using air-valves, why not write to them to request that they reconsider their packaging or try a more environmentally conscious roasting company to see how their coffee compares?
  • Coffee packaging – What type of material did the last bag of coffee that you purchased come in? Chances are it was metallised plastic, why not find a roaster with alternative packaging? Who knows, you may find another great coffee roaster to add to the ones that you buy from.
  • Straws – why would you use these anyway?
  • Milk bottles – Some companies still supply milk in glass bottles, otherwise you could consider non-dairy milks that can be home-made such as oat or almond. Some cafés also offer home-made non-dairy milks which would be a way of going plastic free while enjoying a latte in a café.
  • Cakes/sandwiches packaging – in larger chains these may come in packaging. However, if they are coming in packaging then they are not likely to be that fresh, find somewhere else with better cakes or sandwiches or make your own!
  • Spoons/cutlery
  • Packaging for sugar etc – ditching the sugar is supposed to be good for you anyway. If you cannot resist sweetening your coffee, try to find a sugar that is packaged in paper rather than plastic.
  • Washing up liquid – switching to a re-fillable washing up liquid reduces (but does not eliminate entirely) plastic waste.

Good luck if you take the challenge. There are still a few days left to plan how you can reduce the plastic in your life before the start of Plastic Free July 2017. Please do let me know how your attempts to be plastic free go and whether you find, as I did last year, that you enjoy your tea (or even coffee) more when you do so.

 

 

Batch and CrO2 (Streatham)

coffee in Streatham

Batch & Co, Streatham Hill

A short while ago, on the advice of London’s Best Coffee (and Beanthere.at), I headed along to Streatham to try a couple of cafés including Batch & Co along Streatham Hill Road. The café is quite modern and cubic with plenty of tables at which to sit and enjoy some good coffee and food. Another interesting recommendation from these sites to add to the list. The counter is on the left as you enter and there was a good selection of cakes on offer that day. Is it possible to have too much cake in one day? Sadly, possibly it is and so, as I had already had my fill of cake at a previous café, I kept with just an Americano (roasted by Caravan). Tap water (infused with mint) was available at each table which was greatly appreciated on such a hot day as the one on which we visited.

There were many things to notice in Batch and Co. The street/bus sign above the counter, the large selection of books in the corner (what a shame the seats next to the shelves had been occupied already!), the corrugated zinc walls and then, the cassette tapes on the tables. What a blast from the past. Sadly these tapes were no longer being used to store music but instead as table number indicators. Now ordinarily, I think these cafe-physics reviews should be the sort of science that is accessible to everybody, the sort of observation that anyone could make. But today, today the temptation is just too great, because these cassette tapes are linked to something that is being researched in an obscure but very novel effect that just happens to be an area of research for me. So today, I hope you will stay with me as I take you from Batch & Co to a very odd effect that happens when things (cassette tapes) get very cold.

coffee and cassette tape in Batch and Co

Coffee and tape. Who knew how special the tape material would be?

Those cassette tapes used to work by writing and reading magnetic information. So the actual tape bit needs to be a magnetic material. The first generation of tapes were made with ferric oxide (Fe2O3) but later, and seemingly better, music tapes used chromium dioxide, CrO2, as the tape material. Nowadays the technology of tape cassettes has been superseded by other media but the material CrO2 lives on, it turns out it is a very odd type of material.

Just like iron, chromium dioxide is magnetic, which is why it was used in tapes. But chromium dioxide is a very special type of magnet in that it is what is known as a fully spin polarised magnetic material. To understand what that means, it’s helpful to compare it with iron or copper or indeed, any other metallic material that you can think of. Metals conduct electricity because the electrons in them are free to move from one contact to another and hence carry a current. Electrons are negatively charged particles but they also have a property called “spin”. Although spin is associated with angular momentum (rotation), it is fundamentally a quantum mechanical property of subatomic particles and so shouldn’t be thought of as being about the electron’s rotation on its axis (rather like the Earth rotates). Indeed, it seems that this quantum mechanical property of “spin” is something that is very hard to pin down, even amongst physicists (see here). So instead, generally speaking, we just think about spin having two ‘directions’: spin up and spin down.

tape supporting a table, Batch and Co

An alternative use for a cassette tape. Poor tape.

Ordinarily, the electron spin doesn’t have that much effect on how much current the metal can carry (its ‘resistance’). Indeed for most metals, the number of spin up electrons is roughly equal to the spin down ones. However this is not true of chromium dioxide. Although it is a metal, all of the electrons that conduct the electricity through it are of one spin type. All the electrons are either ‘spin up’ or they are all ‘spin down’. This is spin polarisation. It is something that could never happen in copper.

There are many reasons that this could be interesting, both technologically and purely from the perspective of it being quite beautiful physics. What turns it from interesting to a really big question though is what happens when chromium dioxide interacts with another set of materials, superconductors.

Superconductors are materials that can carry large amounts of current with zero electrical resistance. This property makes them great for things like MRI machines in hospitals where large magnetic fields require the sort of currents superconductors can carry easily. How they are able to do this gets a bit complicated but what is crucial for this subject is the fact that to conduct a supercurrent they need to have zero spin polarisation: they need to have equal numbers of spin up and spin down electrons. (If you are interested in how superconductors superconduct you can read more about them here and here).

cassette tape at Batch and Co

Who knew that this tape was so special?

Now imagine, you have a wire of a superconductor such as very cold niobium (all spins are equal) that you connect to a wire (or a tape) of chromium dioxide (only one spin possible). You may think that if you tried to pass an electrical current down that connection there would be a problem. And you would be right: To conduct electricity, there have to be equal numbers of spin up and spin down electrons on the superconductor side but only one spin type can get through to the chromium dioxide side. There would be an electrical traffic jam. Which is all very logical and reasonable but it isn’t what happens. Instead, for reasons that we still do not understand, not only does the electrical current get through the connection, the chromium dioxide itself becomes superconducting through its proximity to the superconductor. By itself it could never superconduct but somehow, the superconductivity is leaking¹ into the chromium dioxide at the joint between the superconducting wire and the chromium dioxide tape. And it shouldn’t do this because everything we understand about superconductivity requires there to be electron pairs of spin up and spin down and everything we understand about chromium dioxide tells us that is absolutely not the case.

So how does it work? Surely these two effects (of superconductivity and spin polarisation) are incompatible with each other? Is there something peculiar about chromium dioxide that makes it so susceptible to this strange effect? We do not yet know (though we have a few ideas). Many groups around the world are looking at this odd effect including a network of universities in the UK. It is taking us a lot of research and quite a few meetings involving coffee to work it out but hopefully one day we’ll get there.

In the meantime, it may be worth pondering just how special those cassette tapes really were.

Batch&Co is at 54 Streatham Hill Road

¹Yes, “leaking” is, perhaps surprisingly, one of the technical words for what happens in the proximity effect.